Keywords: exponential operator; operator identity; $q$-series identity
@article{ARM_2009_45_1_a3,
author = {Zhang, Zhizheng and Yang, Jizhen},
title = {Several $q$-series identities from the {Euler} expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$},
journal = {Archivum mathematicum},
pages = {47--58},
year = {2009},
volume = {45},
number = {1},
mrnumber = {2591660},
zbl = {1212.05017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a3/}
}
TY - JOUR
AU - Zhang, Zhizheng
AU - Yang, Jizhen
TI - Several $q$-series identities from the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$
JO - Archivum mathematicum
PY - 2009
SP - 47
EP - 58
VL - 45
IS - 1
UR - http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a3/
LA - en
ID - ARM_2009_45_1_a3
ER -
Zhang, Zhizheng; Yang, Jizhen. Several $q$-series identities from the Euler expansions of $(a;q)_{\infty }$ and $\frac{1}{(a;q)_{\infty }}$. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a3/
[1] Andrews, G. E.: Ramanujan’s “Lost” Notebook I, Partial $\theta $-function. Adv. Math. 41 (1981), 137–172. | DOI
[2] Andrews, G. E.: Ramanujan: Essays and Surveys. ch. An introduction to Ramanujan's “Lost” Notebook, pp. 165–184, 2001.
[3] Andrews, G. E., Askey, R., Roy, R.: Special Function. Cambridge University Press, Cambridge, 1999.
[4] Chen, W. Y. C., Liu, Z.-G.: Parameter augmentation for basic hypergeometric series, II. J. Combin. Theory Ser. A 80 (1997), 175–195. | DOI | MR | Zbl
[5] Chen, W. Y. C., Liu, Z.-G.: Mathematical essays in honor of Gian-Carlo Rota. ch. Parameter augmentation for basic hypergeometric series, I, pp. 111–129, Birkhäuser, Basel, 1998. | MR
[6] Gasper, G. G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, Second edition, vol. 96, Cambridge University Press, 2004. | MR | Zbl
[7] Liu, Z.-G.: A new proof of the Nassrallah-Rahman integral. Acta Math. Sinica 41 (2) (1998), 405–410. | MR | Zbl
[8] Liu, Z.-G.: Some operator identities and $q$-series transformation formulas. Discrete Math. 265 (2003), 119–139. | DOI | MR | Zbl
[9] Rogers, L. J.: On the expansion of some infinite products. Proc. London Math. Soc. 24 (1893), 337–352.
[10] Rogers, L. J.: Second Memoir on the expansion of certain infinite products. Proc. London Math. Soc. 25 (1894), 318–343.
[11] Rogers, L. J.: Third Memoir on the expansion of certain infinite products. Proc. London Math. Soc. 26 (1896), 15–32.
[12] Roman, S.: More on the umbral calculus, with emphasis on the $q$-umbral calculus. J. Math. Anal. Appl. 107 (1985), 222–254. | DOI | MR | Zbl
[13] Zhang, Z. Z., Liu, M. X.: Applications of operator identities to the multiple $q$-binomial theorem and $q$-Gauss summation theorem. Discrete Math. 306 (2006), 1424–1437. | DOI | MR | Zbl
[14] Zhang, Z. Z., Wang, J.: Two operator identities and their applications to terminating basic hypergeometric series and $q$-integrals. J. Math. Anal. Appl. 312 (2) (2005), 653–665. | DOI | MR | Zbl