Keywords: harmonic univalent starlike functions; Dziok-Srivastava operator; distortion bounds; extreme points; uniformly convex functions
@article{ARM_2009_45_1_a2,
author = {Murugusundaramoorthy, G. and Vijaya, K. and Raina, R. K.},
title = {A subclass of harmonic functions with varying arguments defined by {Dziok-Srivastava} operator},
journal = {Archivum mathematicum},
pages = {37--46},
year = {2009},
volume = {45},
number = {1},
mrnumber = {2591659},
zbl = {1212.30052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/}
}
TY - JOUR AU - Murugusundaramoorthy, G. AU - Vijaya, K. AU - Raina, R. K. TI - A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator JO - Archivum mathematicum PY - 2009 SP - 37 EP - 46 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/ LA - en ID - ARM_2009_45_1_a2 ER -
%0 Journal Article %A Murugusundaramoorthy, G. %A Vijaya, K. %A Raina, R. K. %T A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator %J Archivum mathematicum %D 2009 %P 37-46 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/ %G en %F ARM_2009_45_1_a2
Murugusundaramoorthy, G.; Vijaya, K.; Raina, R. K. A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/
[1] Avici, Y., Zlotkiewicz, E.: On harmonic univalent mappings. Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1–7. | MR
[2] Carlson, B. C., Shaffer, B.: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15 (2002), 737 – 745. | DOI | MR
[3] Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25. | MR | Zbl
[4] Dziok, J., Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 14 (2003), 7–18. | DOI | MR | Zbl
[5] Goodman, A. W.: On uniformly convex functions. Ann. Polon. Math. 1991 (56), 87–92. | MR
[6] Jahangiri, J. M., Silverman, H.: Harmonic univalent functions with varying rrguments. Int. J. Appl. Math. 8 (3) (2002), 267–275. | MR
[7] Murugusundaramoorthy, G.: A class of Ruscheweyh-Type harmonic univalent functions with varying arguments. Southwest J. Pure Appl. Math. 2 (2003), 90–95. | MR | Zbl
[8] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118 (1993), 189–196. | MR
[9] Rosy, T., Stephen, B. A., Subramanian, K. G., Jahangiri, J. M.: Goodman-Ronning type harmonic univalent functions. Kyungpook Math. J. 41 (2001), 45–54. | MR | Zbl
[10] Ruscheweyh, S.: New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109–115. | DOI | MR | Zbl
[11] Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521–528. | DOI | MR | Zbl
[12] Srivastava, H. M., Owa, S.: Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 106 (1998), 1–28. | MR
[13] Vijaya, K.: Studies on certain subclasses of harmonic functions. Ph.D. thesis, VIT University, 2006.