A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
Archivum mathematicum, Tome 45 (2009) no. 1, pp. 37-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Making use of the Dziok-Srivastava operator, we introduce a new class of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc and are related to uniformly convex functions. We investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.
Making use of the Dziok-Srivastava operator, we introduce a new class of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc and are related to uniformly convex functions. We investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.
Classification : 30C45, 30C50, 33C05, 33C20
Keywords: harmonic univalent starlike functions; Dziok-Srivastava operator; distortion bounds; extreme points; uniformly convex functions
@article{ARM_2009_45_1_a2,
     author = {Murugusundaramoorthy, G. and Vijaya, K. and Raina, R. K.},
     title = {A subclass of harmonic functions with varying arguments defined by {Dziok-Srivastava} operator},
     journal = {Archivum mathematicum},
     pages = {37--46},
     year = {2009},
     volume = {45},
     number = {1},
     mrnumber = {2591659},
     zbl = {1212.30052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/}
}
TY  - JOUR
AU  - Murugusundaramoorthy, G.
AU  - Vijaya, K.
AU  - Raina, R. K.
TI  - A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
JO  - Archivum mathematicum
PY  - 2009
SP  - 37
EP  - 46
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/
LA  - en
ID  - ARM_2009_45_1_a2
ER  - 
%0 Journal Article
%A Murugusundaramoorthy, G.
%A Vijaya, K.
%A Raina, R. K.
%T A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
%J Archivum mathematicum
%D 2009
%P 37-46
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/
%G en
%F ARM_2009_45_1_a2
Murugusundaramoorthy, G.; Vijaya, K.; Raina, R. K. A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a2/

[1] Avici, Y., Zlotkiewicz, E.: On harmonic univalent mappings. Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1–7. | MR

[2] Carlson, B. C., Shaffer, B.: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15 (2002), 737 – 745. | DOI | MR

[3] Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25. | MR | Zbl

[4] Dziok, J., Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 14 (2003), 7–18. | DOI | MR | Zbl

[5] Goodman, A. W.: On uniformly convex functions. Ann. Polon. Math. 1991 (56), 87–92. | MR

[6] Jahangiri, J. M., Silverman, H.: Harmonic univalent functions with varying rrguments. Int. J. Appl. Math. 8 (3) (2002), 267–275. | MR

[7] Murugusundaramoorthy, G.: A class of Ruscheweyh-Type harmonic univalent functions with varying arguments. Southwest J. Pure Appl. Math. 2 (2003), 90–95. | MR | Zbl

[8] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118 (1993), 189–196. | MR

[9] Rosy, T., Stephen, B. A., Subramanian, K. G., Jahangiri, J. M.: Goodman-Ronning type harmonic univalent functions. Kyungpook Math. J. 41 (2001), 45–54. | MR | Zbl

[10] Ruscheweyh, S.: New criteria for univalent functions. Proc. Amer. Math. Soc. 49 (1975), 109–115. | DOI | MR | Zbl

[11] Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521–528. | DOI | MR | Zbl

[12] Srivastava, H. M., Owa, S.: Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 106 (1998), 1–28. | MR

[13] Vijaya, K.: Studies on certain subclasses of harmonic functions. Ph.D. thesis, VIT University, 2006.