Keywords: oscillation; third order; functional differential equation
@article{ARM_2009_45_1_a0,
author = {Agarwal, Ravi P. and Aktas, Mustafa F. and Tiryaki, A.},
title = {On oscillation criteria for third order nonlinear delay differential equations},
journal = {Archivum mathematicum},
pages = {1--18},
year = {2009},
volume = {45},
number = {1},
mrnumber = {2591657},
zbl = {1212.34189},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a0/}
}
TY - JOUR AU - Agarwal, Ravi P. AU - Aktas, Mustafa F. AU - Tiryaki, A. TI - On oscillation criteria for third order nonlinear delay differential equations JO - Archivum mathematicum PY - 2009 SP - 1 EP - 18 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a0/ LA - en ID - ARM_2009_45_1_a0 ER -
Agarwal, Ravi P.; Aktas, Mustafa F.; Tiryaki, A. On oscillation criteria for third order nonlinear delay differential equations. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/ARM_2009_45_1_a0/
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer, Dordrecht, 2000. | MR
[2] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Dynamic Equations. Taylor & Francis, London, 2003. | MR | Zbl
[3] Agarwal, R. P., Grace, S. R., Wong, P. J. Y., : Oscillation of certain third order nonlinear functional differential equations. Adv. Dyn. Syst. Appl. 2 (1) (2007), 13–30. | MR | Zbl
[4] Aktas, M. F., Tiryaki, A.: Oscillation criteria of a certain class of third order nonlinear delay differential equations. Proceedings of the 6th International ISAAC Congress, Ankara, Turkey, 13–18 August 2007, edited by H. G. W. Begehr (Freie Universität Berlin, Germany), A. O. Çelebi (Yeditepe University, Turkey) and R. P. Gilbert (University of Delaware, USA), World Scientific 2009, 507-514. | MR | Zbl
[5] Aktas, M. F., Tiryaki, A., Zafer, A.: Oscillation criteria for third order nonlinear functional differential equations. preprint.
[6] Elias, U.: Generalizations of an inequality of Kiguradze. J. Math. Anal. Appl. 97 (1983), 277–290. | DOI | MR | Zbl
[7] Erbe, L.: Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations. Ann. Mat. Pura Appl. (4) 110 (1976), 373–391. | MR | Zbl
[8] Erbe, L. H., Kong, Q., Zhong, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, Inc., New York, 1995. | MR
[9] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 202 (1) (2008), 102–112. | DOI | MR | Zbl
[10] Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations With Applications. Clarendon Press, Oxford, 1991. | MR
[11] Parhi, N., Das, P.: Oscillatory and asymptotic behavior of a class of nonlinear functional differential equations of third order. Bull. Calcutta Math. Soc. 86 (1994), 253–266. | MR
[12] Philos, Ch. G.: On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays. Arch. Math. (Basel) 36 (1981), 168–178. | DOI | MR
[13] Philos, Ch. G., Sficas, Y. G.: Oscillatory and asymptotic behavior of second and third order retarded differential equations. Czechoslovak Math. J. 32 (107) (1982), 169–182, With a loose Russian summary. | MR | Zbl
[14] Seman, J.: Oscillation theorems for second order delay inequalities. Math. Slovaca 39 (1989), 313–322. | MR
[15] Skerlik, A.: Oscillation theorems for third order nonlinear differential equations. Math. Slovaca 42 (1992), 471–484. | MR | Zbl
[16] Swanson, C A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, 1968. | MR | Zbl
[17] Tiryaki, A., Aktas, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping. J. Math. Anal. Appl. 325 (2007), 54–68. | DOI | MR | Zbl
[18] Tiryaki, A., Yaman, Ş.: Oscillatory behavior of a class of nonlinear differential equations of third order. Acta Math. Sci. 21B (2) (2001), 182–188.