Lie group extensions associated to projective modules of continuous inverse algebras
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 465-489 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$.
Classification : 22E65, 58B34
Keywords: continuous inverse algebra; infinite dimensional Lie group; vector bundle; projective module; semilinear automorphism; covariant derivative; connection
@article{ARM_2008_44_5_a9,
     author = {Neeb, Karl-Hermann},
     title = {Lie group extensions associated to projective modules of continuous inverse algebras},
     journal = {Archivum mathematicum},
     pages = {465--489},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501579},
     zbl = {1212.22009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a9/}
}
TY  - JOUR
AU  - Neeb, Karl-Hermann
TI  - Lie group extensions associated to projective modules of continuous inverse algebras
JO  - Archivum mathematicum
PY  - 2008
SP  - 465
EP  - 489
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a9/
LA  - en
ID  - ARM_2008_44_5_a9
ER  - 
%0 Journal Article
%A Neeb, Karl-Hermann
%T Lie group extensions associated to projective modules of continuous inverse algebras
%J Archivum mathematicum
%D 2008
%P 465-489
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a9/
%G en
%F ARM_2008_44_5_a9
Neeb, Karl-Hermann. Lie group extensions associated to projective modules of continuous inverse algebras. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 465-489. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a9/

[1] Abbati, M. C., Cirelli, R., Mania, A., Michor, P. W.: The Lie group of automorphisms of a principal bundle. J. Geom. Phys. 6 (2) (1989), 215–235. | DOI | MR

[2] Bkouche, R.: Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions. C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. | MR | Zbl

[3] Blackadar, B.: K-theory for operator algebras. Cambridge Univ. Press, 1998. | MR | Zbl

[4] Bratteli, O., Elliot, G. A., Goodman, F. M., Jorgensen, P. E. T.: Smooth Lie group actions on non-commutative tori. Nonlinearity 2 (1989), 271–286. | DOI | MR

[5] Connes, A.: Non-commutative Geometry. Academic Press, 1994.

[6] Dubois-Violette, M.: Dérivations et calcul différentiel non-commutatif. C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. | MR | Zbl

[7] Dubois-Violette, M.: Noncommutative differential geometry, quantum mechanics and gauge theory. Differential geometric methods in theoretical physics. Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. | DOI | MR

[8] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31 (2) (1990), 316–322. | DOI | MR | Zbl

[9] Dubois-Violette, M., Michor, P. W.: Dérivations et calcul différentiel non commutatif. II. C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. | MR | Zbl

[10] Elliott, G. A.: The diffeomorphism group of the irrational rotation $C^*$-algebra. C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. | MR | Zbl

[11] Glöckner, H.: Algebras whose groups of units are Lie groups. Studia Math. 153 (2002), 147–177. | DOI | MR | Zbl

[12] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups. Vol. I, Basic Theory and Main Examples, book in preparation.

[13] Grabowski, J.: Isomorphisms of algebras of smooth functions revisited. arXiv:math.DG/0310295v3. | MR | Zbl

[14] Gracia-Bondia, J. M., Vasilly, J. C., Figueroa, H.: Elements of Non-commutative Geometry. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001.

[15] Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und $\Psi $-Algebren. Math. Ann. 269 (1984), 22–71. | DOI | MR | Zbl

[16] Harris, B.: Group cohomology classes with differential form coefficients. Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. | DOI | MR | Zbl

[17] Harris, L. A., Kaup, W.: Linear algebraic groups in infinite dimensions. Illinois J. Math. 21 (1977), 666–674. | MR | Zbl

[18] Jurčo, B., Schupp, P., Wess, J.: Nonabelian noncommutative gauge theory via noncommutative extra dimensions. Nuclear Phys. B 604 (1-2) (2001), 148–180. | MR | Zbl

[19] Kosmann, Y.: On Lie transformation groups and the covariance of differential operators. Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. | MR | Zbl

[20] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. Math. Surveys Monogr. 53 (1997), 618 pp. | MR | Zbl

[21] Madore, J., Masson, T., Mourad, J.: Linear connections on matrix geometries. Classical Quantum Gravity 12 (1995), 1429–1440. | DOI | MR | Zbl

[22] Milnor, J.: Remarks on infinite-dimensional Lie groups. Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. | MR | Zbl

[23] Mrčun, J.: On isomorphisms of algebras of smooth functions. arXiv:math.DG/0309179v4. | MR

[24] Neeb, K.-H.: Infinite-dimensional Lie groups and their representations. Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. | MR

[25] Neeb, K.-H.: Towards a Lie theory of locally convex groups. Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. | DOI | MR | Zbl

[26] Neeb, K.-H.: Nonabelian extensions of infinite-dimensional Lie groups. Ann. Inst. Fourier 56 (2007), 209–271. | DOI | MR

[27] Neeb, K.-H., Wagemann, F.: Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds. Geom. Dedicata 134 (2008), 17–60. | DOI | MR | Zbl

[28] Rudin, W.: Functional Analysis. McGraw Hill, 1973. | MR | Zbl

[29] Schupp, P.: Non-Abelian gauge theory on non-commutative spaces. Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. | MR

[30] Swan, R. G.: Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 (1962), 264–277. | DOI | MR | Zbl