$GL_n$-Invariant tensors and graphs
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 449-463 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe a correspondence between $\mbox {GL}_n$-invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.
We describe a correspondence between $\mbox {GL}_n$-invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.
Classification : 13A50, 15A72, 20G05
Keywords: invariant tensor; general linear group; graph
@article{ARM_2008_44_5_a8,
     author = {Markl, Martin},
     title = {$GL_n${-Invariant} tensors and graphs},
     journal = {Archivum mathematicum},
     pages = {449--463},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501578},
     zbl = {1212.15051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/}
}
TY  - JOUR
AU  - Markl, Martin
TI  - $GL_n$-Invariant tensors and graphs
JO  - Archivum mathematicum
PY  - 2008
SP  - 449
EP  - 463
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/
LA  - en
ID  - ARM_2008_44_5_a8
ER  - 
%0 Journal Article
%A Markl, Martin
%T $GL_n$-Invariant tensors and graphs
%J Archivum mathematicum
%D 2008
%P 449-463
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/
%G en
%F ARM_2008_44_5_a8
Markl, Martin. $GL_n$-Invariant tensors and graphs. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 449-463. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/

[1] Fuks, D. B.: Cohomology of infinite dimensional Lie algebras. (Kogomologii beskonechnomernykh algebr Li). Kogomologii beskonechnomernykh algebr Li), Nauka, Moskva, 1984. | MR | Zbl

[2] Kauffman, L. H.: Knots and Physics. Series on Knots and Everything , Vol. 1, World Scientific, 1991. | MR | Zbl

[3] Kolář, I, Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR

[4] Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gel'fand mathematics seminars 1990–1992, Birkhäuser, 1993. | MR | Zbl

[5] Markl, M.: Natural differential operators and graph complexes. Preprint math.DG/0612183, December 2006. To appear in Differential Geometry and its Applications. | MR | Zbl

[6] Markl, M., Merkulov, S. A., Shadrin, S.: Wheeled PROPs, graph complexes and the master equation. Preprint math.AG/0610683, October 2006. To appear in Journal of Pure and Applied Algebra. | MR

[7] Weyl, H.: The classical groups. Their invariants and representations. Fifteenth printing. Princeton University Press, 1997. | MR