@article{ARM_2008_44_5_a8,
author = {Markl, Martin},
title = {$GL_n${-Invariant} tensors and graphs},
journal = {Archivum mathematicum},
pages = {449--463},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501578},
zbl = {1212.15051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/}
}
Markl, Martin. $GL_n$-Invariant tensors and graphs. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 449-463. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a8/
[1] Fuks, D. B.: Cohomology of infinite dimensional Lie algebras. (Kogomologii beskonechnomernykh algebr Li). Kogomologii beskonechnomernykh algebr Li), Nauka, Moskva, 1984. | MR | Zbl
[2] Kauffman, L. H.: Knots and Physics. Series on Knots and Everything , Vol. 1, World Scientific, 1991. | MR | Zbl
[3] Kolář, I, Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. | MR
[4] Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gel'fand mathematics seminars 1990–1992, Birkhäuser, 1993. | MR | Zbl
[5] Markl, M.: Natural differential operators and graph complexes. Preprint math.DG/0612183, December 2006. To appear in Differential Geometry and its Applications. | MR | Zbl
[6] Markl, M., Merkulov, S. A., Shadrin, S.: Wheeled PROPs, graph complexes and the master equation. Preprint math.AG/0610683, October 2006. To appear in Journal of Pure and Applied Algebra. | MR
[7] Weyl, H.: The classical groups. Their invariants and representations. Fifteenth printing. Princeton University Press, 1997. | MR