Keywords: projective rigidity; exterior differential systems; Lie algebra cohomology; homogeneous varieties
@article{ARM_2008_44_5_a7,
author = {Landsberg, Joseph M.},
title = {Exterior differential systems, {Lie} algebra cohomology, and the rigidity of homogenous varieties},
journal = {Archivum mathematicum},
pages = {419--447},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501577},
zbl = {1212.53013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a7/}
}
Landsberg, Joseph M. Exterior differential systems, Lie algebra cohomology, and the rigidity of homogenous varieties. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 419-447. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a7/
[1] Berger, E., Bryant, R., Griffiths, P.: Some isometric embedding and rigidity results for Riemannian manifolds. Proc. Nat. Acad. Sci. U.S.A. 78 (8), part 1 (1981), 4657–4660. | DOI | MR | Zbl
[2] Bourbaki, N.: Groupes et algèbres de Lie. Hermann, Paris, 1968. | MR | Zbl
[3] Brion, M.: Spherical varieties. Proceedings of the International Congress of Mathematicians, Zürich 1994, vol. 1, 2, Birkhäuser, Basel, 1995, pp. 753–760. | MR | Zbl
[4] Bryant, R.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (3) (1987), 525–576. | DOI | MR | Zbl
[5] Bryant, R. L.: Rigidity and quasi-rigidity of extremal cycles in Hermitian symmetric spaces. Princeton University Press, AM-153, 2005.
[6] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A.: Exterior differential systems. Mathematical Sciences Research Institute Publications, 18. Springer-Verlag, New York, 1991. | DOI | MR | Zbl
[7] Čap, A.: Lie algebra cohomology and overdetermined systems. preprint.
[8] Čap, A., Schichl, H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29 (3) (2000), 453–505. | MR
[9] Cartan, E.: Sur les variétés de courbure constante d’un espace euclidien ou non euclidien. Bull. Soc. Math. France 47 (1919), 125–160; ; see also pp. 321–432 in 125–160 125–160 and 48 (1920), 132–208; see also pp. 321–432 in Oeuvres Complètes Part 3, Gauthier–Villars, 1955.
[10] Cartan, E.: Sur les variétés a connexion projective. Bull. Soc. Math. France 52 (1924), 205–241. | MR
[11] Chern, S. S., Osserman, R.: Remarks on the Riemannian metric of a minimal submanifold. Geometry Symposium, Utrecht 1980, Lecture Notes in Math., Springer, Berlin-New York 894 (1981), 49–90. | DOI | MR | Zbl
[12] Deligne, P.: La série exceptionnelle des groupes de Lie. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 321–326. | MR
[13] Deligne, P., de Man, R.: The exceptional series of Lie groups. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 577–582. | MR | Zbl
[14] Fubini, G.: Studi relativi all’elemento lineare proiettivo di una ipersuperficie. Rend. Accad. Naz. dei Lincei (1918), 99–106.
[15] Griffiths, P. A., Harris, J.: Algebraic geometry and local differential geometry. Ann. Sci. École Norm. Sup. (4) 12 (1979), 355–432. | MR | Zbl
[16] Harvey, R., Lawson, H. B.: Calibrated geometries. Acta Math. 148 (1982), 47–157. | DOI | MR | Zbl
[17] Hilgert, J.: Multiplicity free branching laws for unitary representations. Srní lectures, 2008.
[18] Hong, J.: Rigidity of singular Schubert varieties in ${\mathrm{G}r}(m,n)$. J. Differential Geom. 71 (1) (2005), 1–22. | MR
[19] Hong, J.: Rigidity of smooth Schubert varieties in Hermitian symmetric spaces. Trans. Amer. Math. Soc. 359 (5) (2007), 2361–2381. | DOI | MR | Zbl
[20] Hwang, J. M., Yamaguchi, K.: Characterization of Hermitian symmetric spaces by fundamental forms. Duke Math. J. 120 (3) (2003), 621–634. | DOI | MR | Zbl
[21] Ivey, T., Landsberg, J. M.: Cartan for beginners: differential geometry via moving frames and exterior differential systems. Grad. Stud. Math. 61 (2003), xiv + 378. | MR | Zbl
[22] Kebekus, S., Peternell, T., Sommese, A., Wiśniewski, J.: Projective contact manifolds. Invent. Math. 142 (1) (2000), 1–15. | DOI | MR
[23] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (1961), 329–387. | DOI | MR | Zbl
[24] Landsberg, J., Robles, C.: Fubini-Griffiths-Harris rigidity and Lie algebra cohomology. preprint arXiv:0707.3410.
[25] Landsberg, J. M.: Differential-geometric characterizations of complete intersections. J. Differential Geom. 44 (1996), 32–73. | MR | Zbl
[26] Landsberg, J. M.: On the infinitesimal rigidity of homogeneous varieties. Compositio Math. 118 (1999), 189–201. | DOI | MR | Zbl
[27] Landsberg, J. M.: Griffiths-Harris rigidity of compact Hermitian symmetric spaces. J. Differential Geom. 74 (3) (2006), 395–405. | MR | Zbl
[28] Landsberg, J. M.: Differential geometry of submanifolds of projective space. Symmetries and overdetermined systems of partial differential equations. Eastwood, Michael (ed.) et al., Proceedings of the IMA summer program, Minneapolis, MN, USA, July 17–August 4, 2006. New York, NY: Springer. The IMA Volumes in Mathematics and its Applications 144 (2008), 105–125. | MR | Zbl
[29] Landsberg, J. M.: Geometry and the complexity of matrix multiplication. Bull. Amer. Math. Soc., New Ser. 45 (2) (2008), 247–284. | DOI | MR | Zbl
[30] Landsberg, J. M., Manivel, L.: The projective geometry of Freudenthal’s magic square. J. Algebra 239 (2) (2001), 477–512. | DOI | MR | Zbl
[31] Landsberg, J. M., Manivel, L.: Construction and classification of complex simple Lie algebras via projective geometry. Selecta Math. 8 (2002), 137–159. | DOI | MR | Zbl
[32] Landsberg, J. M., Manivel, L.: Triality, exceptional Lie algebras, and Deligne dimension formulas. Adv. Math. 171 (2002), 59–85. | DOI | MR | Zbl
[33] Landsberg, J. M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78 (1) (2003), 65–100. | MR | Zbl
[34] Landsberg, J. M., Manivel, L.: Representation theory and projective geometry. Algebraic Transformation Groups and Algebraic Varieties, V. L. Popov (ed.), Encyclopaedia Math. Sci., vol. 132, Springer, 2004, pp. 71–122. | MR | Zbl
[35] Landsberg, J. M., Manivel, L.: Series of Lie groups. Michigan Math. J. 52 (2) (2004), 453–479. | DOI | MR | Zbl
[36] Landsberg, J. M., Manivel, L.: A universal dimension formula for complex simple Lie algebras. Adv. Math. 201 (2) (2006), 379–407. | DOI | MR | Zbl
[37] Landsberg, J. M., Manivel, L.: The sextonions and $E_{7\frac{1}{2}}$. Adv. Math. 201 (1) (2006), 143–179. | MR
[38] Landsberg, J. M., Manivel, L.: Legendrian varieties. Asian Math. J. 11 (3) (2007), 341–360. | DOI | MR | Zbl
[39] Landsberg, J. M., Weyman, J.: On tangential varieties of rational homogeneous varieties. J. London Math. Soc. (2) 76 (2) (2007), 513–530. | DOI | MR | Zbl
[40] Landsberg, J. M., Weyman, J.: On the ideals and singularities of secant varieties of Segre varieties. Bull. London Math. Soc. 39 (4) (2007), 685–697. | DOI | MR | Zbl
[41] LeBrun, C., Salamon, S.: Strong rigidity of positive quaternion-Kahler manifolds. Invent. Math. 118 (1994), 109–132. | DOI | MR
[42] Loday, P.: Algebraic operads, Koszul duality and generalized bialgebras. Srní lectures, 2008.
[43] Robles, C.: Rigidity of the adjoint variety of $\mathfrak{sl}_n$. preprint math.DG/0608471.
[44] Sasaki, T., Yamaguchi, K., Yoshida, M.: On the rigidity of differential systems modelled on Hermitian symmetric spaces and disproofs of a conjecture concerning modular interpretations of configuration spaces. CR-geometry and overdetermined systems (Osaka, 1994), Adv. Stud. Pure Math. 25, 318-354 (1997), 1997. | MR | Zbl
[45] Se-Ashi, Y.: On differential invariants of integrable finite type linear differential equations. Hokkaido Math. J. 17 (2) (1988), 151–195. | MR | Zbl
[46] Vogel, P.: The universal Lie algebra. preprint http://people.math.jussieu.fr/$\tilde{\ }$vogel/.
[47] Yamaguchi, K.: Differential systems associated with simple graded Lie algebras. Progress in differential geometry, Adv. Stud. Pure Math. 22, 1993. | MR | Zbl
[48] Yang, D.: Involutive hyperbolic differential systems. Mem. Amer. Math. Soc. 68 (370) (1987), xii+93 pp. | MR | Zbl