Moduli spaces of Lie algebroid connections
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 403-418 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.
We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.
Classification : 32G13
Keywords: moduli space; connection; Lie algebroid
@article{ARM_2008_44_5_a6,
     author = {K\v{r}i\v{z}ka, Libor},
     title = {Moduli spaces of {Lie} algebroid connections},
     journal = {Archivum mathematicum},
     pages = {403--418},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501576},
     zbl = {1212.32009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a6/}
}
TY  - JOUR
AU  - Křižka, Libor
TI  - Moduli spaces of Lie algebroid connections
JO  - Archivum mathematicum
PY  - 2008
SP  - 403
EP  - 418
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a6/
LA  - en
ID  - ARM_2008_44_5_a6
ER  - 
%0 Journal Article
%A Křižka, Libor
%T Moduli spaces of Lie algebroid connections
%J Archivum mathematicum
%D 2008
%P 403-418
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a6/
%G en
%F ARM_2008_44_5_a6
Křižka, Libor. Moduli spaces of Lie algebroid connections. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 403-418. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a6/

[1] Cuellar, J., Dynin, A., Dynin, S.: Fredholm operator families - I. Integral Equations Operator Theory (1983), 853–862. | MR | Zbl

[2] Donaldson, S. K., Kronheimer, P. B.: The Geometry of Four-Manifolds. Oxford University Press, 2001. | MR

[3] Dupré, M. J., Glazebrook, J. F.: Infinite dimensional manifold structures on principal bundles. J. Lie Theory 10 (2000), 359–373. | MR

[4] Glöckner, H.: Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. J. Funct. Anal. 194 (2002), 347–409. | DOI | MR | Zbl

[5] Glöckner, H., Neeb, K. H.: Banach-Lie quotients, enlargibility, and universal complexifications. J. Reine Angew. Math. 560 (2003), 1–28. | DOI | MR | Zbl

[6] Gualtieri, M.: Generalized complex geometry. 2007, math/0703298.

[7] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004.

[8] Gukov, S., Witten, E.: Gauge Theory, Ramification, And The Geometric Langlands Program. hep-th/0612073.

[9] Hitchin, N. J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55 (1987), 59–126. | DOI | MR | Zbl

[10] Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric langlands program. Communications in Number Theory and Physics 1 (2007), 1–236, hep-th/0604151. | DOI | MR | Zbl

[11] Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Iwanani Shoten, Publishers and Princeton University Press, 1987. | MR | Zbl

[12] Lübke, M., Okonek, C.: Moduli spaces of simple bundles and Hermitian-Einstein connections. Math. Ann. 276 (1987), 663–674. | DOI | MR

[13] Lübke, M., Teleman, A.: The Kobayashi-Hitchin Correspondence. World Scientific, 1995. | MR