Keywords: special vector field; pseudo-Riemannian spaces; Riemannian spaces; symmetric spaces; Kasner metric
@article{ARM_2008_44_5_a4,
author = {Hinterleitner, Irena and Kiosak, Volodymyr A.},
title = {$\phi({\rm Ric})$-vector fields in {Riemannian} spaces},
journal = {Archivum mathematicum},
pages = {385--390},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501574},
zbl = {1212.53018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/}
}
Hinterleitner, Irena; Kiosak, Volodymyr A. $\phi({\rm Ric})$-vector fields in Riemannian spaces. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 385-390. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/
[1] Brinkmann, H. W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94 (1) (1925), 119–145. | DOI | MR
[2] Hall, G.: Some remarks on the space-time of Newton and Einstein. Fund. Theories Phys. 153 (2007), 13–29. | MR | Zbl
[3] Kiosak, V. A.: Equidistant Riemannian spaces. Geometry of generalized spaces. Penz. Gos. Ped. Inst., Penza (1992), 37–41. | MR
[4] Landau, L. D., Lifschitz, E. M.: Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie. Akademie Verlag, Berlin, 1973. | MR
[5] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (3) (1996), 311–333. | DOI | MR
[6] Mikeš, J., Hinterleitner, I., Kiosak, V. A.: On the theory of geodesic mappings of Einstein spaces and their generalizations. AIP Conf. Proc., 2006, pp. 428–435.
[7] Mikeš, J., Rachůnek, L.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. | MR | Zbl
[8] Mikeš, J., Škodová, M.: Concircular vector fields on compact spaces. Publ. de la RSME 11 (2007), 302–307.
[9] Shandra, I. G.: Concircular vector fields on semi-riemannian spaces. J. Math. Sci. 31 (2003), 53–68. | MR
[10] Yano, K.: Concircular Geometry. I-IV. Proc. Imp. Acad., Tokyo, 1940. | Zbl