$\phi({\rm Ric})$-vector fields in Riemannian spaces
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 385-390 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf{Ric}}$, $\mu =\mbox {const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox {\textbf{Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox {\textbf{Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox {\textbf{Ric}})$-vector fields in symmetric spaces are given.
In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf{Ric}}$, $\mu =\mbox {const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox {\textbf{Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox {\textbf{Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox {\textbf{Ric}})$-vector fields in symmetric spaces are given.
Classification : 53B05, 53B30
Keywords: special vector field; pseudo-Riemannian spaces; Riemannian spaces; symmetric spaces; Kasner metric
@article{ARM_2008_44_5_a4,
     author = {Hinterleitner, Irena and Kiosak, Volodymyr A.},
     title = {$\phi({\rm Ric})$-vector fields in {Riemannian} spaces},
     journal = {Archivum mathematicum},
     pages = {385--390},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501574},
     zbl = {1212.53018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/}
}
TY  - JOUR
AU  - Hinterleitner, Irena
AU  - Kiosak, Volodymyr A.
TI  - $\phi({\rm Ric})$-vector fields in Riemannian spaces
JO  - Archivum mathematicum
PY  - 2008
SP  - 385
EP  - 390
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/
LA  - en
ID  - ARM_2008_44_5_a4
ER  - 
%0 Journal Article
%A Hinterleitner, Irena
%A Kiosak, Volodymyr A.
%T $\phi({\rm Ric})$-vector fields in Riemannian spaces
%J Archivum mathematicum
%D 2008
%P 385-390
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/
%G en
%F ARM_2008_44_5_a4
Hinterleitner, Irena; Kiosak, Volodymyr A. $\phi({\rm Ric})$-vector fields in Riemannian spaces. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 385-390. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a4/

[1] Brinkmann, H. W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94 (1) (1925), 119–145. | DOI | MR

[2] Hall, G.: Some remarks on the space-time of Newton and Einstein. Fund. Theories Phys. 153 (2007), 13–29. | MR | Zbl

[3] Kiosak, V. A.: Equidistant Riemannian spaces. Geometry of generalized spaces. Penz. Gos. Ped. Inst., Penza (1992), 37–41. | MR

[4] Landau, L. D., Lifschitz, E. M.: Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie. Akademie Verlag, Berlin, 1973. | MR

[5] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (3) (1996), 311–333. | DOI | MR

[6] Mikeš, J., Hinterleitner, I., Kiosak, V. A.: On the theory of geodesic mappings of Einstein spaces and their generalizations. AIP Conf. Proc., 2006, pp. 428–435.

[7] Mikeš, J., Rachůnek, L.: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. | MR | Zbl

[8] Mikeš, J., Škodová, M.: Concircular vector fields on compact spaces. Publ. de la RSME 11 (2007), 302–307.

[9] Shandra, I. G.: Concircular vector fields on semi-riemannian spaces. J. Math. Sci. 31 (2003), 53–68. | MR

[10] Yano, K.: Concircular Geometry. I-IV. Proc. Imp. Acad., Tokyo, 1940. | Zbl