Invariant prolongation of BGG-operators in conformal geometry
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 367-384 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

BGG-operators form sequences of invariant differential operators and the first of these is overdetermined. Interesting equations in conformal geometry described by these operators are those for Einstein scales, conformal Killing forms and conformal Killing tensors. We present a deformation procedure of the tractor connection which yields an invariant prolongation of the first operator. The explicit calculation is presented in the case of conformal Killing forms.
BGG-operators form sequences of invariant differential operators and the first of these is overdetermined. Interesting equations in conformal geometry described by these operators are those for Einstein scales, conformal Killing forms and conformal Killing tensors. We present a deformation procedure of the tractor connection which yields an invariant prolongation of the first operator. The explicit calculation is presented in the case of conformal Killing forms.
Classification : 35C15, 35N10, 53A30, 58J70
Keywords: conformal geometry; invariant differential operators; overdetermined systems; prolongation; tractor calculus
@article{ARM_2008_44_5_a3,
     author = {Hammerl, Matthias},
     title = {Invariant prolongation of {BGG-operators} in conformal geometry},
     journal = {Archivum mathematicum},
     pages = {367--384},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501573},
     zbl = {1212.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a3/}
}
TY  - JOUR
AU  - Hammerl, Matthias
TI  - Invariant prolongation of BGG-operators in conformal geometry
JO  - Archivum mathematicum
PY  - 2008
SP  - 367
EP  - 384
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a3/
LA  - en
ID  - ARM_2008_44_5_a3
ER  - 
%0 Journal Article
%A Hammerl, Matthias
%T Invariant prolongation of BGG-operators in conformal geometry
%J Archivum mathematicum
%D 2008
%P 367-384
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a3/
%G en
%F ARM_2008_44_5_a3
Hammerl, Matthias. Invariant prolongation of BGG-operators in conformal geometry. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 367-384. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a3/

[1] Bailey, T. N., Eastwood, M. G., Gover, A. Rod: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. | DOI | MR

[2] Branson, T., Čap, A., Eastwood, M., Gover, A. R.: Prolongations of geometric overdetermined systems. Int. J. Math. 17 (6) (2006), 641–664. | DOI | MR | Zbl

[3] Calderbank, D. M. J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. | MR | Zbl

[4] Čap, A.: Infinitesimal automorphisms and deformations of parabolic geometries. J. Europ. Math. Soc., to appear. | MR

[5] Čap, A.: Overdetermined systems, conformal geometry, and the BGG complex. Symmetries and Overdetermined Systems of Partial Differential Equations (Eastwood, M. G., Millor, W., eds.), vol. 144, The IMA Volumes in Mathematics and its Applications, Springer, 2008, pp. 1–25.

[6] Čap, A., Gover, A. R.: Tractor bundles for irreducible parabolic geometries. Global analysis and harmonic analysis (Marseille-Luminy, 1999), vol. 4 of Sémin. Congr., Soc. Math. France, Paris, 2000, pp. 129–154. | MR

[7] Čap, A., Gover, A. R.: Tractor calculi for parabolic geometries. Trans. Amer. Math. Soc. 354 (4) (2002), 1511–1548, electronic. | DOI | MR | Zbl

[8] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequences. Ann. of Math. 154 (1) (2001), 97–113. | DOI | MR | Zbl

[9] Eastwood, M.: Higher symmetries of the Laplacian. Ann. of Math. (2) 161 (3) (2005), 1645–1665. | DOI | MR | Zbl

[10] Gover, A. R.: Laplacian operators and $Q$-curvature on conformally Einstein manifolds. Math. Ann. 336 (2) (2006), 311–334. | DOI | MR | Zbl

[11] Gover, A. R., Nurowski, P.: Obstructions to conformally Einstein metrics in $n$ dimensions. J. Geom. Phys. 56 (3) (2006), 450–484. | DOI | MR | Zbl

[12] Gover, A. R., Šilhan, J.: The conformal Killing equation on forms – prolongations and applications. Diff. Geom. Appl., to appear.

[13] Kashiwada, T.: On conformal Killing tensor. Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74. | MR | Zbl

[14] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. (2) 74 (1961), 329–387. | DOI | MR | Zbl

[15] Leitner, F.: Conformal Killing forms with normalisation condition. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 279–292. | MR | Zbl

[16] Penrose, R., Rindler, W.: Spinors and space-time. Two-spinor calculus and relativistic fields, vol. 1, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1987. | MR | Zbl

[17] Semmelmann, U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245 (3) (2003), 503–527. | DOI | MR | Zbl

[18] Šilhan, J.: Invariant operators in conformal geometry. Ph.D. thesis, University of Auckland, 2006.