Keywords: span; stable span; manifolds; non-invariance
@article{ARM_2008_44_5_a2,
author = {Crowley, Diarmuid J. and Zvengrowski, Peter D.},
title = {On the non-invariance of span and immersion co-dimension for manifolds},
journal = {Archivum mathematicum},
pages = {353--365},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501571},
zbl = {1212.57009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a2/}
}
Crowley, Diarmuid J.; Zvengrowski, Peter D. On the non-invariance of span and immersion co-dimension for manifolds. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 353-365. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a2/
[1] Atiyah, M.: Thom complexes. Proc. London Math. Soc. 11 (3) (1961), 291–310. | MR | Zbl
[2] Benlian, R., Wagoner, J.: Type d’homotopie et réduction structurale des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. A-B 207-209. 265 (1967), 207–209. | MR
[3] Bredon, G. E., Kosinski, A.: Vector fields on $\pi $-manifolds. Ann. of Math. (2) 84 (1966), 85–90. | DOI | MR | Zbl
[4] Brumfiel, G.: On the homotopy groups of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$. Ann. of Math. (2) 88 (1968), 291–311. | DOI | MR
[5] Davis, J. F., Kirk, P.: Lecture notes in algebraic topology. Grad. Stud. Math. 35 (2001). | MR | Zbl
[6] Dupont, J.: On the homotopy invariance of the tangent bundle II. Math. Scand. 26 (1970), 200–220. | MR
[7] Frank, D.: The signature defect and the homotopy of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$. Comment. Math. Helv. 48 (1973), 525–530. | DOI | MR
[8] Husemoller, D.: Fibre Bundles. Grad. Texts in Math. 20 (1993), (3rd edition). | MR | Zbl
[9] James, I. M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech. 14 (1965), 485–506. | MR | Zbl
[10] Kervaire, M. A.: A note on obstructions and characteristic classes. Amer. J. Math. 81 (1959), 773–784. | DOI | MR
[11] Kirby, R. C., Siebenmann, L. C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Ann. of Math. Stud. 88 (1977). | MR | Zbl
[12] Korbaš, J., Szücs, A.: The Lyusternik-Schnirel’man category, vector bundles, and immersions of manifolds. Manuscripta Math. 95 (1998), 289–294. | DOI | MR
[13] Korbaš, J., Zvengrowski, P.: The vector field problem: a survey with emphasis on specific manifolds. Exposition. Math. 12 (1) (1994), 3–20. | MR
[14] Kosinski, A. A.: Differential Manifolds. pure and applied mathematics ed., Academic Press, San Diego, 1993. | MR | Zbl
[15] Kreck, M., Lück, W.: The Novikov Conjecture, Geometry and Algebra. Oberwolfach Seminars 33, Birkhäuser Verlag, Basel, 2005. | MR | Zbl
[16] Lance, T.: Differentiable Structures on Manifolds, in Surveys on Surgery Theory. Ann. of Math. Stud. 145 (2000), 73–104. | MR
[17] Milnor, J.: Microbundles I. Topology 3 Suppl. 1 (1964), 53–80. | DOI | MR
[18] Morita, S.: Smoothability of ${\mathrm{P}L}$ manifolds is not topologically invariant. Manifolds—Tokyo 1973, 1975, pp. 51–56. | MR
[19] Novikov, S. P.: Topology in the 20th century: a view from the inside. Uspekhi Mat. Nauk (translation in Russian Math. Surveys 59 (5) (2004), 803-829 59 (5) (2004), 3–28. | MR | Zbl
[20] Pedersen, E. K., Ray, N.: A fibration for ${\rm Diff}\,\Sigma ^{n}$. Topology Symposium, Siegen 1979, Lecture Notes in Math. 788, 1980, pp. 165–171. | MR
[21] Randall, D.: CAT $2$-fields on nonorientable CAT manifolds. Quart. J. Math. Oxford Ser. (2) 38 (151) (1987), 355–366. | DOI | MR | Zbl
[22] Roitberg, J.: On the ${\rm PL}$ noninvariance of the span of a smooth manifold. Proc. Amer. Math. Soc. 20 (1969), 575–579. | MR
[23] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds. Nagoya Math. J. 12 (1957), 59–69. | MR | Zbl
[24] Sutherland, W. A.: The Browder-Dupont invariant. Proc. Lond. Math. Soc. (3) 33 (1976), 94–112. | DOI | MR | Zbl
[25] Varadarajan, K.: On topological span. Comment. Math. Helv. 47 (1972), 249–253. | DOI | MR | Zbl
[26] Wall, C. T. C.: Classification problems in differential topology - VI. Topology 6 (1967), 273–296. | DOI | MR | Zbl
[27] Wall, C. T. C.: Poincaré complexes I. Ann. of Math. (2) 86 (1967), 213–245. | DOI | MR | Zbl