Keywords: surface bundle; sheaf; classifying space; homological stability
@article{ARM_2008_44_5_a14,
author = {Weiss, Michael},
title = {New sheaf theoretic methods in differential topology},
journal = {Archivum mathematicum},
pages = {549--567},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501584},
zbl = {1212.57008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a14/}
}
Weiss, Michael. New sheaf theoretic methods in differential topology. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 549-567. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a14/
[1] Bröcker, T., Jänich, K.: Introduction to Differential Topology. Engl. edition, Cambridge University Press, New York (1982); German ed. Springer-Verlag, New York (1973). | MR
[2] Drinfeld, V.: On the notion of geometric realization. arXiv:math/0304064. | MR | Zbl
[3] Earle, C. J., Eells, J.: A fibre bundle description of Teichmüller theory. J. Differential Geom. 3 (1969), 19–43. | MR | Zbl
[4] Earle, C. J., Schatz, A.: Teichmüller theory for surfaces with boundary. J. Differential Geom. 4 (1970), 169–185. | MR | Zbl
[5] Galatius, S.: Stable homology of automorphism groups of free groups. arXiv:math/0610216.
[6] Galatius, S.: Mod $p$ homology of the stable mapping class group. Topology 43 (2004), 1105–1132. | DOI | MR | Zbl
[7] Galatius, S., Madsen, I., Tillmann, U., Weiss, M.: The homotopy type of the cobordism category. arXiv:math/0605249. | MR
[8] Harer, J.: Stability of the homology of the mapping class groups of oriented surfaces. Ann. of Math. (2) 121 (1985), 215–249. | MR
[9] Ivanov, N.: Stabilization of the homology of the Teichmüller modular groups. Algebra i Analiz 1 (1989), 120–126, translation in Leningrad Math. J. 1 (1990), 675–691. | MR
[10] Madsen, I., Tillmann, U.: The stable mapping class group and $Q\mathbb{C}P^\infty _+$. Invent. Math. 145 (2001), 509–544. | DOI | MR
[11] Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2) 165 (2007), 843–941. | MR | Zbl
[12] McDuff, D., Segal, G.: Homology fibrations and the “group-completion” theorem. Invent. Math. 31 (1976), 279–284. | DOI | MR | Zbl
[13] Miller, E.: The homology of the mapping class group. J. Differential Geom. 24 (1986), 1–14. | MR | Zbl
[14] Milnor, J.: Construction of universal bundles. II. Ann. of Math. (2) 63 (1956), 430–436. | DOI | MR | Zbl
[15] Moerdijk, I.: Classifying spaces and classifying topoi. Lecture Notes in Math. 1616, Springer-Verlag, New York, 1995. | MR | Zbl
[16] Morita, S.: Characteristic classes of surface bundles. Bull. Amer. Math. Soc. 11 (1984), 386–388 11 (1984), 386–388. | DOI | MR | Zbl
[17] Morita, S.: Characteristic classes of surface bundles. Invent. Math. 90 (1987), 551–557 90 (1987), 551–557. | DOI | MR | Zbl
[18] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. Arithmetic and Geometry, Vol. II, Progr. in Maths. series 36, 271–328, Birkhäuser, Boston, 1983, pp. 271–328. | MR | Zbl
[19] Powell, J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68 (1978), 347–350 68 (1978), 347–350. | DOI | MR | Zbl
[20] Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. | DOI | MR | Zbl
[21] Segal, G.: Categories and cohomology theories. Topology 13 (1974), 293–312. | DOI | MR | Zbl
[22] Segal, G.: The topology of spaces of rational functions. Acta Math. 143 (1979), 39–72. | DOI | MR | Zbl
[23] Tillmann, U.: On the homotopy of the stable mapping class group. Invent. Math. 130 (1997), 257–275. | DOI | MR | Zbl
[24] Weiss, M.: What does the classifying space of a category classify?. Homology, Homotopy Appl. 7 (2005), 185–195. | MR | Zbl