Keywords: natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
@article{ARM_2008_44_5_a13,
author = {Vondra, Jan},
title = {Classification of principal connections naturally induced on $W^2PE$},
journal = {Archivum mathematicum},
pages = {535--547},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501583},
zbl = {1212.53040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a13/}
}
Vondra, Jan. Classification of principal connections naturally induced on $W^2PE$. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 535-547. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a13/
[1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections. to appear.
[2] Doupovec, M., Mikulski, W. M.: Holonomic extensions of connections and symmetrization of jets. Rep. Math. Phys. 60 (2007), 299–316. | DOI | MR
[3] Eck, D. J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 48p. | MR | Zbl
[4] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories. Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. | MR | Zbl
[5] Janyška, J.: On the curvature of tensor product connections and covariant differentials. Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143. | MR | Zbl
[6] Janyška, J.: Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), 177–196. | DOI | MR | Zbl
[7] Janyška, J.: Higher order valued reduction theorems for classical connections. Cent. Eur. J. Math. 3 (2005), 294–308. | DOI | MR | Zbl
[8] Kolář, I.: Some natural operators in differential geometry. Differential Geom. Appl., D. Reidel, 1987, pp. 91–110. | MR
[9] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer–Verlag, 1993. | MR
[10] Kolář, I., Virsik, G.: Connections in first principal prolongations. Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171. | MR
[11] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990. | MR
[12] Nijenhuis, A.: Natural bundles and their general properties. Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo. | MR | Zbl
[13] Terng, C. L.: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775–823. | DOI | MR | Zbl