Metrization problem for linear connections and holonomy algebras
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 511-521 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).
We contribute to the following: given a manifold endowed with a linear connection, decide whether the connection arises from some metric tensor. Compatibility condition for a metric is given by a system of ordinary differential equations. Our aim is to emphasize the role of holonomy algebra in comparison with certain more classical approaches, and propose a possible application in the Calculus of Variations (for a particular type of second order system of ODE’s, which define geodesics of a linear connection, components of a metric compatible with the connection play the role of variational multipliers).
Classification : 53B05, 53B20
Keywords: manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra
@article{ARM_2008_44_5_a11,
     author = {Van\v{z}urov\'a, Alena},
     title = {Metrization problem for linear connections and holonomy algebras},
     journal = {Archivum mathematicum},
     pages = {511--521},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501581},
     zbl = {1212.53021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Metrization problem for linear connections and holonomy algebras
JO  - Archivum mathematicum
PY  - 2008
SP  - 511
EP  - 521
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/
LA  - en
ID  - ARM_2008_44_5_a11
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Metrization problem for linear connections and holonomy algebras
%J Archivum mathematicum
%D 2008
%P 511-521
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/
%G en
%F ARM_2008_44_5_a11
Vanžurová, Alena. Metrization problem for linear connections and holonomy algebras. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 511-521. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/

[1] Anastasiei, M.: Metrizable linear connections in vector bundles. Publ. Math. Debrecen 62 (3-4) (2003), 277–287. | MR

[2] Cheng, K. S., Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.

[3] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.

[4] Gołab, S.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 9 (1959), 132–137.

[5] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 14 (1963), 132–137. | MR | Zbl

[6] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil. Tensor, N.S. 17 (1966), 28–43. | MR

[7] Jakubowicz, A.: Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume. Tensor, N.S. 18 (1967), 259–270. | MR

[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.

[9] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | DOI | MR | Zbl

[10] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note Mat. 8 (1) (1988), 1–11. | MR | Zbl

[11] Levine, J.: Invariant characterization of two-dimensional affine and metric spaces. Duke Math. J. 14 (1948), 69–77. | MR

[12] Schmidt, B. G.: Conditions on a connection to be a metric connection. Comm. Math. Phys. 29 (1973), 55–59. | DOI | MR

[13] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19 (6) (1991), 529–532.

[14] Vanžurová, A.: Linear connections on two-manifolds and SODE’s. Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332.

[15] Vilimová, Z.: The problem of metrizability of linear connections. Master's thesis, Opava, 2004, supervisor: O. Krupková.