Keywords: manifold; linear connection; pseudo-Riemannian metric; holonomy group; holonomy algebra
@article{ARM_2008_44_5_a11,
author = {Van\v{z}urov\'a, Alena},
title = {Metrization problem for linear connections and holonomy algebras},
journal = {Archivum mathematicum},
pages = {511--521},
year = {2008},
volume = {44},
number = {5},
mrnumber = {2501581},
zbl = {1212.53021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/}
}
Vanžurová, Alena. Metrization problem for linear connections and holonomy algebras. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 511-521. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a11/
[1] Anastasiei, M.: Metrizable linear connections in vector bundles. Publ. Math. Debrecen 62 (3-4) (2003), 277–287. | MR
[2] Cheng, K. S., Ni, W. T.: Necessary and sufficient conditions for the existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 16 (1978), 228–232.
[3] Eisenhart, L. P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[4] Gołab, S.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 9 (1959), 132–137.
[5] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume. Tensor, N. S. 14 (1963), 132–137. | MR | Zbl
[6] Jakubowicz, A.: Über die Metrisierbarkeit der affin-zusammenhängenden Räume, II Teil. Tensor, N.S. 17 (1966), 28–43. | MR
[7] Jakubowicz, A.: Über die Metrisierbarkeit der vier-dimensionalen affin-zusammenhängenden Räume. Tensor, N.S. 18 (1967), 259–270. | MR
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[9] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. | DOI | MR | Zbl
[10] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note Mat. 8 (1) (1988), 1–11. | MR | Zbl
[11] Levine, J.: Invariant characterization of two-dimensional affine and metric spaces. Duke Math. J. 14 (1948), 69–77. | MR
[12] Schmidt, B. G.: Conditions on a connection to be a metric connection. Comm. Math. Phys. 29 (1973), 55–59. | DOI | MR
[13] Thompson, G.: Local and global existence of metrics in two-dimensional affine manifolds. Chinese J. Phys. 19 (6) (1991), 529–532.
[14] Vanžurová, A.: Linear connections on two-manifolds and SODE’s. Proc. Conf. Aplimat 2007 (Bratislava, Slov. Rep.), Part II, 2007, pp. 325–332.
[15] Vilimová, Z.: The problem of metrizability of linear connections. Master's thesis, Opava, 2004, supervisor: O. Krupková.