Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 341-352 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Connected weakly irreducible not irreducible subgroups of $\mbox {Sp}(1,n+1)\subset \mbox {SO}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4.
Connected weakly irreducible not irreducible subgroups of $\mbox {Sp}(1,n+1)\subset \mbox {SO}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4.
Classification : 53C29, 53C50
Keywords: pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group
@article{ARM_2008_44_5_a1,
     author = {Bezvitnaya, Natalia I.},
     title = {Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$},
     journal = {Archivum mathematicum},
     pages = {341--352},
     year = {2008},
     volume = {44},
     number = {5},
     mrnumber = {2501571},
     zbl = {1212.53071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a1/}
}
TY  - JOUR
AU  - Bezvitnaya, Natalia I.
TI  - Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$
JO  - Archivum mathematicum
PY  - 2008
SP  - 341
EP  - 352
VL  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a1/
LA  - en
ID  - ARM_2008_44_5_a1
ER  - 
%0 Journal Article
%A Bezvitnaya, Natalia I.
%T Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$
%J Archivum mathematicum
%D 2008
%P 341-352
%V 44
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a1/
%G en
%F ARM_2008_44_5_a1
Bezvitnaya, Natalia I. Weakly irreducible subgroups of $\mbox {Sp}(1,n+1)$. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 341-352. http://geodesic.mathdoc.fr/item/ARM_2008_44_5_a1/

[1] Alekseevsky, D. V.: Homogeneous Riemannian manifolds of negative curvature. Mat. Sb. (N.S.) 96 (138) (1975), 93–117. | MR

[2] Ambrose, W., Singer, I. M.: A theorem on holonomy. Trans. Amer. Math. Soc. 75 (1953), 428–443. | DOI | MR | Zbl

[3] Berard Bergery, L., Ikemakhen, A.: On the holonomy of Lorentzian manifolds. Proc. Sympos. Pure Math. 54 (1993), 27–40. | MR | Zbl

[4] Berger, M.: Sur les groupers d’holonomie des variétés àconnexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330. | MR

[5] Besse, A. L.: Einstein Manifolds. Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR | Zbl

[6] Bryant, R.: Metrics with exceptional holonomy. Ann. of Math. (2) 126 (1987), 525–576. | MR | Zbl

[7] Galaev, A. S.: Classification of connected holonomy groups for pseudo-Kählerian manifolds of index 2. arXiv:math.DG/0405098.

[8] Galaev, A. S.: Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidian spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 87–97. | MR

[9] Galaev, A. S.: Metrics that realize all Lorentzian holonomy algebras. Internat. J. Geom. Meth. Modern Phys. 3 (5, 6) (2006), 1025–1045. | DOI | MR | Zbl

[10] Joyce, D.: Compact manifolds with special holonomy. Oxford University Press, 2000. | MR | Zbl

[11] Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differential Geom. 76 (3) (2007), 423–484. | MR | Zbl

[12] Wu, H.: Holonomy groups of indefinite metrics. Pacific J. Math. 20 (1967), 351–382. | DOI | MR | Zbl