Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign
Archivum mathematicum, Tome 44 (2008) no. 4, pp. 317-334 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the global asymptotic stability of the zero solution of the half-linear differential system \[ x^{\prime } = -\,e(t)x + f(t)\phi _{p^*}\!(y)\,,\quad y^{\prime } = -\,g(t)\phi _p(x) - h(t)y\,, \] where $p > 1$, $p^* > 1$ ($1/p + 1/p^* = 1$), and $\phi _q(z) = |z|^{q-2}z$ for $q = p$ or $q = p^*$. The coefficients are not assumed to be positive. This system includes the linear differential system $\mathbf{x}^{\prime } = A(t)\mathbf{x}$ with $A(t)$ being a $2 \times 2$ matrix as a special case. Our results are new even in the linear case ($p = p^*\! = 2$). Our results also answer the question whether the zero solution of the linear system is asymptotically stable even when Coppel’s condition does not hold and the real part of every eigenvalue of $A(t)$ is not always negative for $t$ sufficiently large. Some suitable examples are included to illustrate our results.
This paper is concerned with the global asymptotic stability of the zero solution of the half-linear differential system \[ x^{\prime } = -\,e(t)x + f(t)\phi _{p^*}\!(y)\,,\quad y^{\prime } = -\,g(t)\phi _p(x) - h(t)y\,, \] where $p > 1$, $p^* > 1$ ($1/p + 1/p^* = 1$), and $\phi _q(z) = |z|^{q-2}z$ for $q = p$ or $q = p^*$. The coefficients are not assumed to be positive. This system includes the linear differential system $\mathbf{x}^{\prime } = A(t)\mathbf{x}$ with $A(t)$ being a $2 \times 2$ matrix as a special case. Our results are new even in the linear case ($p = p^*\! = 2$). Our results also answer the question whether the zero solution of the linear system is asymptotically stable even when Coppel’s condition does not hold and the real part of every eigenvalue of $A(t)$ is not always negative for $t$ sufficiently large. Some suitable examples are included to illustrate our results.
Classification : 34D05, 34D23, 37B25, 37B55
Keywords: global asymptotic stability; half-linear differential systems; growth conditions; eigenvalue
@article{ARM_2008_44_4_a6,
     author = {Sugie, Jitsuro and Onitsuka, Masakazu},
     title = {Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign},
     journal = {Archivum mathematicum},
     pages = {317--334},
     year = {2008},
     volume = {44},
     number = {4},
     mrnumber = {2493428},
     zbl = {1212.34156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/}
}
TY  - JOUR
AU  - Sugie, Jitsuro
AU  - Onitsuka, Masakazu
TI  - Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign
JO  - Archivum mathematicum
PY  - 2008
SP  - 317
EP  - 334
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/
LA  - en
ID  - ARM_2008_44_4_a6
ER  - 
%0 Journal Article
%A Sugie, Jitsuro
%A Onitsuka, Masakazu
%T Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign
%J Archivum mathematicum
%D 2008
%P 317-334
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/
%G en
%F ARM_2008_44_4_a6
Sugie, Jitsuro; Onitsuka, Masakazu. Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 317-334. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/

[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. | MR | Zbl

[2] Bihari, I.: On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437. | MR | Zbl

[3] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Heath, Boston, 1965. | MR | Zbl

[4] Desoer, C. A.: Slowly varying system $\dot{x}=A(t)x$. IEEE Trans. Automat. Control AC-14 (1969), 780–781. | DOI | MR

[5] Dickerson, J. R.: Stability of linear systems with parametric excitation. Trans. ASME Ser. E J. Appl. Mech. 37 (1970), 228–230. | DOI | MR | Zbl

[6] Došlý, O., Řehák, P.: Half-linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. | MR

[7] Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York. | MR | Zbl

[8] Elbert, Á.: A half-linear second order differential equation. Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180. | MR | Zbl

[9] Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. | MR | Zbl

[10] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25 (1995), 991–1002. | DOI | MR | Zbl

[11] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Amer. Math. Soc. 124 (1996), 415–422. | DOI | MR | Zbl

[12] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995), 209–223. | DOI | MR | Zbl

[13] Hatvani, L., Totik, V.: Asymptotic stability for the equilibrium of the damped oscillator. Differential Integral Equations 6 (1993), 835–848. | MR

[14] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR | Zbl

[15] LaSalle, J. P., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications. Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961. | MR

[16] Li, H.-J., Yeh, C.-C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204. | MR | Zbl

[17] Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12 (1960), 305–317. | MR | Zbl

[18] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. | DOI | MR | Zbl

[19] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994), 815–835. | DOI | MR | Zbl

[20] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. | MR | Zbl

[21] Sugie, J., Onitsuka, M., Yamaguchi, A.: Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Sci. Math. Hungar. 44 (2007), 159–189. | MR | Zbl

[22] Sugie, J., Yamaoka, N.: Comparison theorems for oscillation of second-order half-linear differential equations. Acta Math. Hungar. 111 (2006), 165–179. | DOI | MR | Zbl

[23] Vinograd, R. E.: On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations. Dokl. Akad. Nauk 84 (1952), 201–204. | MR

[24] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Math. Society Japan, Tokyo (1966). | MR

[25] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems. Pergamon Press, New-York-Oxford-London-Paris, 1962. | MR | Zbl