Keywords: global asymptotic stability; half-linear differential systems; growth conditions; eigenvalue
@article{ARM_2008_44_4_a6,
author = {Sugie, Jitsuro and Onitsuka, Masakazu},
title = {Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign},
journal = {Archivum mathematicum},
pages = {317--334},
year = {2008},
volume = {44},
number = {4},
mrnumber = {2493428},
zbl = {1212.34156},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/}
}
TY - JOUR AU - Sugie, Jitsuro AU - Onitsuka, Masakazu TI - Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign JO - Archivum mathematicum PY - 2008 SP - 317 EP - 334 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/ LA - en ID - ARM_2008_44_4_a6 ER -
Sugie, Jitsuro; Onitsuka, Masakazu. Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 317-334. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a6/
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht-Boston-London, 2002. | MR | Zbl
[2] Bihari, I.: On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437. | MR | Zbl
[3] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Heath, Boston, 1965. | MR | Zbl
[4] Desoer, C. A.: Slowly varying system $\dot{x}=A(t)x$. IEEE Trans. Automat. Control AC-14 (1969), 780–781. | DOI | MR
[5] Dickerson, J. R.: Stability of linear systems with parametric excitation. Trans. ASME Ser. E J. Appl. Mech. 37 (1970), 228–230. | DOI | MR | Zbl
[6] Došlý, O., Řehák, P.: Half-linear Differential Equations. North-Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. | MR
[7] Elbert, Á.: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math. 964, Springer-Verlag, Berlin-Heidelberg-New York. | MR | Zbl
[8] Elbert, Á.: A half-linear second order differential equation. Qualitative Theory of Differential Equations, Vol I, II (Szeged, 1979) (Farkas, M., ed.), Colloq. Math. Soc. János Bolyai 30, North-Holland, Amsterdam-New York, 1981, pp. 153–180. | MR | Zbl
[9] Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. | MR | Zbl
[10] Hatvani, L.: On the asymptotic stability for a two-dimensional linear nonautonomous differential system. Nonlinear Anal. 25 (1995), 991–1002. | DOI | MR | Zbl
[11] Hatvani, L.: Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Amer. Math. Soc. 124 (1996), 415–422. | DOI | MR | Zbl
[12] Hatvani, L., Krisztin, T., Totik, V.: A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995), 209–223. | DOI | MR | Zbl
[13] Hatvani, L., Totik, V.: Asymptotic stability for the equilibrium of the damped oscillator. Differential Integral Equations 6 (1993), 835–848. | MR
[14] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. | DOI | MR | Zbl
[15] LaSalle, J. P., Lefschetz, S.: Stability by Liapunov’s Direct Method, with Applications. Mathematics in Science and Engineering 4, Academic Press, New-York-London, 1961. | MR
[16] Li, H.-J., Yeh, C.-C.: Sturmian comparison theorem for half-linear second-order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1193–1204. | MR | Zbl
[17] Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12 (1960), 305–317. | MR | Zbl
[18] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. | DOI | MR | Zbl
[19] Pucci, P., Serrin, J.: Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994), 815–835. | DOI | MR | Zbl
[20] Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Applied Mathematical Sciences 22, Springer-Verlag, New York-Heidelberg-Berlin, 1977. | MR | Zbl
[21] Sugie, J., Onitsuka, M., Yamaguchi, A.: Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Sci. Math. Hungar. 44 (2007), 159–189. | MR | Zbl
[22] Sugie, J., Yamaoka, N.: Comparison theorems for oscillation of second-order half-linear differential equations. Acta Math. Hungar. 111 (2006), 165–179. | DOI | MR | Zbl
[23] Vinograd, R. E.: On a criterion of instability in the sense of Lyapunov of the solutions of a linear system of ordinary differential equations. Dokl. Akad. Nauk 84 (1952), 201–204. | MR
[24] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Math. Society Japan, Tokyo (1966). | MR
[25] Zubov, V. I.: Mathematical Methods for the Study of Automatic Control Systems. Pergamon Press, New-York-Oxford-London-Paris, 1962. | MR | Zbl