Lattice-valued Borel measures. III
Archivum mathematicum, Tome 44 (2008) no. 4, pp. 307-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$ $(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.
Let $X$ be a completely regular $T_{1}$ space, $E$ a boundedly complete vector lattice, $ C(X)$ $(C_{b}(X))$ the space of all (all, bounded), real-valued continuous functions on $X$. In order convergence, we consider $E$-valued, order-bounded, $\sigma $-additive, $\tau $-additive, and tight measures on X and prove some order-theoretic and topological properties of these measures. Also for an order-bounded, $E$-valued (for some special $E$) linear map on $C(X)$, a measure representation result is proved. In case $E_{n}^{*}$ separates the points of $E$, an Alexanderov’s type theorem is proved for a sequence of $\sigma $-additive measures.
Classification : 28A33, 28B15, 28C05, 28C15, 46B42, 46G10
Keywords: order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem
@article{ARM_2008_44_4_a5,
     author = {Khurana, Surjit Singh},
     title = {Lattice-valued {Borel} measures. {III}},
     journal = {Archivum mathematicum},
     pages = {307--316},
     year = {2008},
     volume = {44},
     number = {4},
     mrnumber = {2493427},
     zbl = {1212.28009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Lattice-valued Borel measures. III
JO  - Archivum mathematicum
PY  - 2008
SP  - 307
EP  - 316
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/
LA  - en
ID  - ARM_2008_44_4_a5
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Lattice-valued Borel measures. III
%J Archivum mathematicum
%D 2008
%P 307-316
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/
%G en
%F ARM_2008_44_4_a5
Khurana, Surjit Singh. Lattice-valued Borel measures. III. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 307-316. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/

[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Academic Press, 1985. | MR | Zbl

[2] Diestel, J., Uhl, J. J.: Vector measures. Math. Surveys 15 (1977), 322. | MR | Zbl

[3] Kaplan, S.: The second dual of the space of continuous function. Trans. Amer. Math. Soc. 86 (1957), 70–90. | DOI | MR

[4] Kaplan, S.: The second dual of the space of continuous functions IV. Trans. Amer. Math. Soc. 113 (1964), 517–546. | DOI | MR | Zbl

[5] Kawabe, J.: The Portmanteau theorem for Dedekind complete Riesz space-valued measures. Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. | MR | Zbl

[6] Kawabe, J.: Uniformity for weak order convergence of Riesz space-valued measures. Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. | DOI | MR

[7] Khurana, Surjit Singh: Lattice-valued Borel Measures. Rocky Mountain J. Math. 6 (1976), 377–382. | DOI | MR

[8] Khurana, Surjit Singh: Lattice-valued Borel Measures II. Trans. Amer. Math. Soc. 235 (1978), 205–211. | DOI | MR | Zbl

[9] Khurana, Surjit Singh: Vector measures on topological spaces. Georgian Math. J. 14 (2007), 687–698. | MR | Zbl

[10] Kluvanek, I., Knowles, G.: Vector measures and Control Systems. North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. | MR

[11] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157–165. | DOI | MR | Zbl

[12] Lipecki, Z.: Riesz representation representation theorems for positive operators. Math. Nachr. 131 (1987), 351–356. | DOI | MR

[13] Meyer-Nieberg, P.: Banach Lattices and positive operators. Springer-Verlag, 1991. | MR

[14] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag, 1974. | MR | Zbl

[15] Schaefer, H. H.: Topological Vector Spaces. Springer-Verlag, 1986. | MR

[16] Schaefer, H. H., Zhang, Xaio-Dong: A note on order-bounded vector measures. Arch. Math. (Basel) 63 (2) (1994), 152–157. | DOI | MR

[17] Schmidt, K. D.: On the Jordan decomposition for vector measures. Probability in Banach spaces, IV. (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. | MR

[18] Schmidt, K. D.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. | MR | Zbl

[19] Varadarajan, V. S.: Measures on topological spaces. Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220.

[20] Wheeler, R. F.: Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97–190. | MR | Zbl

[21] Wright, J. D. M.: Stone-algebra-valued measures and integrals. Proc. London Math. Soc. (3) 19 (1969), 107–122. | MR | Zbl

[22] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. | DOI | MR | Zbl

[23] Wright, J. D. M.: Vector lattice measures on locally compact spaces. Math. Z. 120 (1971), 193–203. | DOI | MR | Zbl

[24] Wright, J. D. M.: Measures with values in partially ordered vector spaces. Proc. London Math. Soc. 25 (1972), 675–688. | MR

[25] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property. J. London Math. Soc. 7 (1973), 277–285. | DOI | MR