Keywords: order convergence; tight and $\tau $-smooth lattice-valued vector measures; measure representation of positive linear operators; Alexandrov’s theorem
@article{ARM_2008_44_4_a5,
author = {Khurana, Surjit Singh},
title = {Lattice-valued {Borel} measures. {III}},
journal = {Archivum mathematicum},
pages = {307--316},
year = {2008},
volume = {44},
number = {4},
mrnumber = {2493427},
zbl = {1212.28009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/}
}
Khurana, Surjit Singh. Lattice-valued Borel measures. III. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 307-316. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a5/
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Academic Press, 1985. | MR | Zbl
[2] Diestel, J., Uhl, J. J.: Vector measures. Math. Surveys 15 (1977), 322. | MR | Zbl
[3] Kaplan, S.: The second dual of the space of continuous function. Trans. Amer. Math. Soc. 86 (1957), 70–90. | DOI | MR
[4] Kaplan, S.: The second dual of the space of continuous functions IV. Trans. Amer. Math. Soc. 113 (1964), 517–546. | DOI | MR | Zbl
[5] Kawabe, J.: The Portmanteau theorem for Dedekind complete Riesz space-valued measures. Nonlinear Analysis and Convex Analysis, Yokohama Publ., 2004, pp. 149–158. | MR | Zbl
[6] Kawabe, J.: Uniformity for weak order convergence of Riesz space-valued measures. Bull. Austral. Math. Soc. 71 (2) (2005), 265–274. | DOI | MR
[7] Khurana, Surjit Singh: Lattice-valued Borel Measures. Rocky Mountain J. Math. 6 (1976), 377–382. | DOI | MR
[8] Khurana, Surjit Singh: Lattice-valued Borel Measures II. Trans. Amer. Math. Soc. 235 (1978), 205–211. | DOI | MR | Zbl
[9] Khurana, Surjit Singh: Vector measures on topological spaces. Georgian Math. J. 14 (2007), 687–698. | MR | Zbl
[10] Kluvanek, I., Knowles, G.: Vector measures and Control Systems. North-Holland Math. Stud. 20 (58) (1975), ix+180 pp. | MR
[11] Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math. 33 (1970), 157–165. | DOI | MR | Zbl
[12] Lipecki, Z.: Riesz representation representation theorems for positive operators. Math. Nachr. 131 (1987), 351–356. | DOI | MR
[13] Meyer-Nieberg, P.: Banach Lattices and positive operators. Springer-Verlag, 1991. | MR
[14] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag, 1974. | MR | Zbl
[15] Schaefer, H. H.: Topological Vector Spaces. Springer-Verlag, 1986. | MR
[16] Schaefer, H. H., Zhang, Xaio-Dong: A note on order-bounded vector measures. Arch. Math. (Basel) 63 (2) (1994), 152–157. | DOI | MR
[17] Schmidt, K. D.: On the Jordan decomposition for vector measures. Probability in Banach spaces, IV. (Oberwolfach 1982) Lecture Notes in Math. 990 (1983), 198–203, Springer, Berlin-New York. | MR
[18] Schmidt, K. D.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. (2) 29 (1) (1986), 23–39. | MR | Zbl
[19] Varadarajan, V. S.: Measures on topological spaces. Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161–220.
[20] Wheeler, R. F.: Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97–190. | MR | Zbl
[21] Wright, J. D. M.: Stone-algebra-valued measures and integrals. Proc. London Math. Soc. (3) 19 (1969), 107–122. | MR | Zbl
[22] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85. | DOI | MR | Zbl
[23] Wright, J. D. M.: Vector lattice measures on locally compact spaces. Math. Z. 120 (1971), 193–203. | DOI | MR | Zbl
[24] Wright, J. D. M.: Measures with values in partially ordered vector spaces. Proc. London Math. Soc. 25 (1972), 675–688. | MR
[25] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property. J. London Math. Soc. 7 (1973), 277–285. | DOI | MR