Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions
Archivum mathematicum, Tome 44 (2008) no. 4, pp. 295-305 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.
A generalized quasilinearization technique is applied to obtain a sequence of approximate solutions converging monotonically and quadratically to the unique solution of the forced Duffing equation with nonlocal discontinuous type integral boundary conditions.
Classification : 34A45, 34B10, 34B15
Keywords: duffing equation; integral boundary conditions; quasilinearization; quadratic convergence
@article{ARM_2008_44_4_a4,
     author = {Alsaedi, Ahmed},
     title = {Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions},
     journal = {Archivum mathematicum},
     pages = {295--305},
     year = {2008},
     volume = {44},
     number = {4},
     mrnumber = {2493426},
     zbl = {1212.34017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a4/}
}
TY  - JOUR
AU  - Alsaedi, Ahmed
TI  - Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions
JO  - Archivum mathematicum
PY  - 2008
SP  - 295
EP  - 305
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a4/
LA  - en
ID  - ARM_2008_44_4_a4
ER  - 
%0 Journal Article
%A Alsaedi, Ahmed
%T Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions
%J Archivum mathematicum
%D 2008
%P 295-305
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a4/
%G en
%F ARM_2008_44_4_a4
Alsaedi, Ahmed. Approximation of solutions of the forced duffing equation with nonlocal discontinuous type integral boundary conditions. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 295-305. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a4/

[1] Ahmad, B.: A quasilinearization method for a class of integro-differential equations with mixed nonlinearities. Nonlinear Anal. Real World Appl. 7 (2006), 997–1004. | MR | Zbl

[2] Ahmad, B., Alsaedi, A.: Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Anal. Real World Appl. 10 (2009), 358–367. | MR | Zbl

[3] Ahmad, B., Alsaedi, A., Alghamdi, B.: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl. 9 (2008), 1727–1740. | MR | Zbl

[4] Ahmad, B., Naz, U., Khan, R. A.: A higher order monotone iterative scheme for nonlinear Neumann boundary value problems. Bull. Korean Math. Soc. 42 (2005), 17–22. | DOI | MR | Zbl

[5] Ahmad, B., Nieto, J. J.: The monotone iterative technique for three-point second-order integrodifferential boundary value problems with p-Laplacian. Boundary Value Problems 2007 (2007), 9pp., Article ID 57481, doi: 10.1155/2007/57481. | MR | Zbl

[6] Ahmad, B., Nieto, J. J.: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69 (2008), 3291–3298. | MR | Zbl

[7] Ahmad, B., Nieto, J. J., Shahzad, N.: The Bellman-Kalaba-Lakshmikantham quasilinearization method for Neumann problems. J. Math. Anal. Appl. 257 (2001), 356–363. | DOI | MR

[8] Ahmad, B., Sivasundaram, S.: The monotone iterative technique for impulsive hybrid set valued integro-differential equations. Nonlinear Anal. 65 (2006), 2260–2276. | DOI | MR | Zbl

[9] Bellman, R., Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems. Amer. Elsevier, New York, 1965. | MR | Zbl

[10] Bouziani, A., Benouar, N. E.: Mixed problem with integral conditions for a third order parabolic equation. Kobe J. Math. 15 (1998), 47–58. | MR | Zbl

[11] Cabada, A., Nieto, J. J.: Rapid convergence of the iterative technique for first order initial value problems. Appl. Math. Comput. 87 (1997), 217–226. | DOI | MR | Zbl

[12] Cannon, J. R.: Encyclopedia of Math. and its Appl. ch. The one-dimensional heat equation, Addison-Wesley, Mento Park, CA, 1984. | MR

[13] Cannon, J. R., Esteva, S. Perez, Hoek, J. Van Der: A Galerkin procedure for the diffusion equation subject to the specification of mass. SIAM. J. Numer. Anal. 24 (1987), 499–515. | DOI | MR

[14] Choi, Y. S., Chan, K. Y.: A parabolic equation with nonlocal boundary conditions arising from electrochemistry. Nonlinear Anal. 18 (1992), 317–331. | DOI | MR | Zbl

[15] Denche, M., Marhoune, A. L.: Mixed problem with integral boundary condition for a high order mixed type partial differential equation. J. Appl. Math. Stoch. Anal. 16 (2003), 69–79. | DOI | MR | Zbl

[16] Ewing, R. E., Lin, T.: A class of parameter estimation techniques for fluid flow in porous media. Adv. Water Res. 14 (1991), 89–97. | DOI | MR

[17] Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2 (1999), 75–83. | DOI | Zbl

[18] Ionkin, N. I.: Solution of a boundary value problem in heat condition with a nonclassical boundary condition. Differ. Uravn. 13 (1977), 294–304. | MR

[19] Kartynnik, A. V.: Three-point boundary value problem with an integral space-variable condition for a second-order parabolic equation. Differential Equations 26 (1990), 1160–1166. | MR | Zbl

[20] Ladde, G. S., Lakshmikantham, V., Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Pitman, Boston, 1985. | MR | Zbl

[21] Lakshmikantham, V., Nieto, J. J.: Generalized quasilinearization for nonlinear first order ordinary differential equations. Nonlinear Times & Digest 2 (1995), 1–10. | MR | Zbl

[22] Lakshmikantham, V., Vatsala, A. S.: Mathematics and its Applications, 440. ch. Generalized Quasilinearization for Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1998. | MR

[23] Nieto, J. J., Rodriguez-Lopez, R.: Monotone method for first-order functional differential equations. Comput. Math. Appl. 52 (2006), 471–484. | DOI | MR | Zbl

[24] Shi, P.: Weak solution to evolution problem with a nonlocal constraint. SIAM J. Math. Anal. 24 (1993), 46–58. | DOI | MR

[25] Vatsala, A. S., Yang, J.: Monotone iterative technique for semilinear elliptic systems. Boundary Value Probl. 2 (2005), 93–106. | MR | Zbl

[26] Yurchuk, N. I.: Mixed problem with an integral condition for certain parabolic equations. Differential Equations 22 (1986), 1457–1463. | MR | Zbl