Keywords: $\mathcal{I}$-regular; codense ideal; $\mathcal{I}$-compact; $\mathcal{I}$-paracompact
@article{ARM_2008_44_4_a1,
author = {Renukadevi, V. and Sivaraj, D.},
title = {A generalization of normal spaces},
journal = {Archivum mathematicum},
pages = {265--270},
year = {2008},
volume = {44},
number = {4},
mrnumber = {2493423},
zbl = {1212.54073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a1/}
}
Renukadevi, V.; Sivaraj, D. A generalization of normal spaces. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 265-270. http://geodesic.mathdoc.fr/item/ARM_2008_44_4_a1/
[1] Hamlett, T. R., Jancović, D.: Compactness with respect to an ideal. Boll. Un. Mat. Ital. B (7) 4 (1990), 849–861. | MR
[2] Hamlett, T. R., Jancović, D.: On weaker forms of paracompactness, countable compactness and Lindelofness. Ann. New York Acad. Sci. 728 (1994), 41–49. | DOI | MR
[3] Jancović, D., Hamlett, T. R.: New Topologies from old via ideals. Amer. Math. Monthly 97 (4) (1990), 295 – 310. | DOI | MR
[4] Kuratowski, K.: Topology, Vol. I. Academic Press, New York, 1966. | MR | Zbl
[5] Newcomb, R. L.: Topologies which are compact modulo an ideal. Ph.D. thesis, University of Cal. at Santa Barbara, 1967.
[6] Renukadevi, V., Sivaraj, D., Tamizh Chelvam, T.: Codense and Completely codense ideals. Acta Math. Hungar. 108 (3) (2005), 197–205. | MR
[7] Steen, L. A., Seebach, J. A.: Counterexamples in Topology. Springer-Verlag, New York, 1978. | MR | Zbl
[8] Vaidyanathaswamy, R.: The localization theory in set topology. Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51–61. | MR
[9] Vaidyanathaswamy, R.: Set Topology. Chelsea Publishing Company, 1946. | MR
[10] Zahid, M. I.: Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies. Ph.D. thesis, Univ. of Pittsburgh, 1981.