Keywords: boundary value problem; differential inclusion; contractive set-valued map; fixed point
@article{ARM_2008_44_3_a7,
author = {Cernea, Aurelian},
title = {On a nonconvex boundary value problem for a first order multivalued differential system},
journal = {Archivum mathematicum},
pages = {237--244},
year = {2008},
volume = {44},
number = {3},
mrnumber = {2462979},
zbl = {1212.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a7/}
}
Cernea, Aurelian. On a nonconvex boundary value problem for a first order multivalued differential system. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 237-244. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a7/
[1] Boucherif, A., Merabet, N. Chiboub-Fellah: Boundary value problems for first order multivalued differential systems. Arch. Math. (Brno) 41 (2005), 187–195. | MR
[2] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer-Verlag, Berlin, 1977. | MR | Zbl
[3] Cernea, A.: Existence for nonconvex integral inclusions via fixed points. Arch. Math. (Brno) 39 (2003), 293–298. | MR | Zbl
[4] Cernea, A.: An existence result for nonlinear integrodifferential inclusions. Comm. Appl. Nonlinear Anal. 14 (2007), 17–24. | MR
[5] Cernea, A.: On the existence of solutions for a higher order differential inclusion without convexity. Electron. J. Qual. Theory Differ. Equ. 8 (2007), 1–8. | MR | Zbl
[6] Covitz, H., Nadler jr., S. B.: Multivalued contraction mapping in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | DOI | MR
[7] Kannai, Z., Tallos, P.: Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged) 61 (1995), 197–207. | MR | Zbl
[8] Lim, T. C.: On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441. | DOI | MR | Zbl
[9] Tallos, P.: A Filippov-Gronwall type inequality in infinite dimensional space. Pure Math. Appl. 5 (1994), 355–362. | MR