Keywords: lines of curvature; line congruence; E. Study’s map; instantaneous revolution axis
@article{ARM_2008_44_3_a6,
author = {Abdel-Baky, Rashad A. and Al-Bokhary, Ashwaq J.},
title = {A new approach for describing instantaneous line congruence},
journal = {Archivum mathematicum},
pages = {223--236},
year = {2008},
volume = {44},
number = {3},
mrnumber = {2462978},
zbl = {1212.53001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/}
}
Abdel-Baky, Rashad A.; Al-Bokhary, Ashwaq J. A new approach for describing instantaneous line congruence. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 223-236. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/
[1] Abdel-Baky, R. A.: On the congruences of the tangents to a surface. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. | MR | Zbl
[2] Abdel-Baky, R. A.: On instantaneous rectilinear congruences. J. Geom. Graph. 7 (2) (2003), 129–135. | MR | Zbl
[3] Abdel Baky, R. A.: Inflection and torsion line congruences. J. Geom. Graph. 11 (1) (2004), 1–14. | MR
[4] Abdel-Baky, R. A.: On a line congruence which has the parameter ruled surfaces as principal ruled surfaces. Appl. Math. Comput. 151 (2004), 849–862. | DOI | MR | Zbl
[5] Blaschke, W.: Vorlesungen über Differential Geometrie. Dover Publications, New York, 1945. | MR
[6] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Press, New York, 1979. | MR | Zbl
[7] Clifford, W. K.: Preliminary Sketch of bi-quaternions. Proc. London Math. Soc. 4 (64, 65) (1873), 361–395.
[8] Eisenhart, L. P.: A Treatise in Differential Geometry of Curves and Surfaces. New York, Ginn Camp., 1969.
[9] Gugenheimer, H. W.: Differential Geometry. Graw-Hill, New York, 1956.
[10] Gursy, O.: The dual angle of pitch of a closed ruled surface. Mech. Mach. Theory 25 (47) (1990), 131–140. | DOI
[11] Hlavaty, V.: Differential Line Geometry. Groningen, P. Noordhoff Ltd. X, 1953. | MR | Zbl
[12] Hoschek, J.: Liniengeometrie. B.I. Hochschultaschenbuch, Mannheim, 1971. | MR | Zbl
[13] Karger, A., Novak, J.: Space Kinematics and Lie Groups. Gordon and Breach Science Publishers, New York, 1985. | MR
[14] Koch, R.: Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$. Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). | MR
[15] Kose, Ö.: Contributions to the theory of integral invariants of a closed ruled surface. Mech. Mach. Theory 32 (2) (1997), 261–277. | DOI
[16] Mc-Carthy, J. M.: On the scalar and dual formulations of curvature theory of line trajectories. ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. | DOI
[17] Muller, H. R.: Kinematik Dersleri. Ankara University Press, 1963. | MR
[18] Schaaf, J. A.: Curvature theory of line trajectories in spatial kinematics. Doctoral dissertation, University of California, Davis (1988). | MR
[19] Schaaf, J. A.: Geometric continuity of ruled surfaces. Comput. Aided Geom. Design 15 (1998), 289–310. | DOI | MR | Zbl
[20] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes. Tech. report, Institute für Geometrie, TU Wien 34, 1996.
[21] Veldkamp, G. R.: On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics. Mech. Mach. Theory 11 (1976), 141–156. | DOI
[22] Weatherburn, M. A.: Differential Geometry of Three Dimensions. Cambridge University Press, 1, 1969.
[23] Yang, A. T.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. Doctoral dissertation, Columbia (1967).