A new approach for describing instantaneous line congruence
Archivum mathematicum, Tome 44 (2008) no. 3, pp. 223-236 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.
Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.
Classification : 53A04, 53A05, 53A17
Keywords: lines of curvature; line congruence; E. Study’s map; instantaneous revolution axis
@article{ARM_2008_44_3_a6,
     author = {Abdel-Baky, Rashad A. and Al-Bokhary, Ashwaq J.},
     title = {A new approach for describing instantaneous line congruence},
     journal = {Archivum mathematicum},
     pages = {223--236},
     year = {2008},
     volume = {44},
     number = {3},
     mrnumber = {2462978},
     zbl = {1212.53001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/}
}
TY  - JOUR
AU  - Abdel-Baky, Rashad A.
AU  - Al-Bokhary, Ashwaq J.
TI  - A new approach for describing instantaneous line congruence
JO  - Archivum mathematicum
PY  - 2008
SP  - 223
EP  - 236
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/
LA  - en
ID  - ARM_2008_44_3_a6
ER  - 
%0 Journal Article
%A Abdel-Baky, Rashad A.
%A Al-Bokhary, Ashwaq J.
%T A new approach for describing instantaneous line congruence
%J Archivum mathematicum
%D 2008
%P 223-236
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/
%G en
%F ARM_2008_44_3_a6
Abdel-Baky, Rashad A.; Al-Bokhary, Ashwaq J. A new approach for describing instantaneous line congruence. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 223-236. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a6/

[1] Abdel-Baky, R. A.: On the congruences of the tangents to a surface. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. | MR | Zbl

[2] Abdel-Baky, R. A.: On instantaneous rectilinear congruences. J. Geom. Graph. 7 (2) (2003), 129–135. | MR | Zbl

[3] Abdel Baky, R. A.: Inflection and torsion line congruences. J. Geom. Graph. 11 (1) (2004), 1–14. | MR

[4] Abdel-Baky, R. A.: On a line congruence which has the parameter ruled surfaces as principal ruled surfaces. Appl. Math. Comput. 151 (2004), 849–862. | DOI | MR | Zbl

[5] Blaschke, W.: Vorlesungen über Differential Geometrie. Dover Publications, New York, 1945. | MR

[6] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Press, New York, 1979. | MR | Zbl

[7] Clifford, W. K.: Preliminary Sketch of bi-quaternions. Proc. London Math. Soc. 4 (64, 65) (1873), 361–395.

[8] Eisenhart, L. P.: A Treatise in Differential Geometry of Curves and Surfaces. New York, Ginn Camp., 1969.

[9] Gugenheimer, H. W.: Differential Geometry. Graw-Hill, New York, 1956.

[10] Gursy, O.: The dual angle of pitch of a closed ruled surface. Mech. Mach. Theory 25 (47) (1990), 131–140. | DOI

[11] Hlavaty, V.: Differential Line Geometry. Groningen, P. Noordhoff Ltd. X, 1953. | MR | Zbl

[12] Hoschek, J.: Liniengeometrie. B.I. Hochschultaschenbuch, Mannheim, 1971. | MR | Zbl

[13] Karger, A., Novak, J.: Space Kinematics and Lie Groups. Gordon and Breach Science Publishers, New York, 1985. | MR

[14] Koch, R.: Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$. Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). | MR

[15] Kose, Ö.: Contributions to the theory of integral invariants of a closed ruled surface. Mech. Mach. Theory 32 (2) (1997), 261–277. | DOI

[16] Mc-Carthy, J. M.: On the scalar and dual formulations of curvature theory of line trajectories. ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. | DOI

[17] Muller, H. R.: Kinematik Dersleri. Ankara University Press, 1963. | MR

[18] Schaaf, J. A.: Curvature theory of line trajectories in spatial kinematics. Doctoral dissertation, University of California, Davis (1988). | MR

[19] Schaaf, J. A.: Geometric continuity of ruled surfaces. Comput. Aided Geom. Design 15 (1998), 289–310. | DOI | MR | Zbl

[20] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes. Tech. report, Institute für Geometrie, TU Wien 34, 1996.

[21] Veldkamp, G. R.: On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics. Mech. Mach. Theory 11 (1976), 141–156. | DOI

[22] Weatherburn, M. A.: Differential Geometry of Three Dimensions. Cambridge University Press, 1, 1969.

[23] Yang, A. T.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. Doctoral dissertation, Columbia (1967).