OD-characterization of almost simple groups related to $L_{2}(49)$
Archivum mathematicum, Tome 44 (2008) no. 3, pp. 191-199 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.
In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$.
Classification : 20D05, 20D06, 20D60
Keywords: almost simple group; prime graph; degree of a vertex; degree pattern
@article{ARM_2008_44_3_a2,
     author = {Zhang, Liangcai and Shi, Wujie},
     title = {OD-characterization of almost simple groups related to $L_{2}(49)$},
     journal = {Archivum mathematicum},
     pages = {191--199},
     year = {2008},
     volume = {44},
     number = {3},
     mrnumber = {2462974},
     zbl = {1204.20006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/}
}
TY  - JOUR
AU  - Zhang, Liangcai
AU  - Shi, Wujie
TI  - OD-characterization of almost simple groups related to $L_{2}(49)$
JO  - Archivum mathematicum
PY  - 2008
SP  - 191
EP  - 199
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/
LA  - en
ID  - ARM_2008_44_3_a2
ER  - 
%0 Journal Article
%A Zhang, Liangcai
%A Shi, Wujie
%T OD-characterization of almost simple groups related to $L_{2}(49)$
%J Archivum mathematicum
%D 2008
%P 191-199
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/
%G en
%F ARM_2008_44_3_a2
Zhang, Liangcai; Shi, Wujie. OD-characterization of almost simple groups related to $L_{2}(49)$. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/

[1] Chen, G. Y.: On structure of Frobenius and $2$-Frobenius group. J. Southwest China Normal Univ. 20 (5) (1995), 485–487, (in Chinese).

[2] Chen, Z. M., Shi, W. J.: On $C_{p,p}$-simple groups. J. Southwest China Normal Univ. 18 (3) (1993), 249–256, (in Chinese).

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Clarendon Press (Oxford), London – New York, 1985. | MR | Zbl

[4] Gorenstein, D.: Finite Groups. Harper and Row, New York, 1980. | MR | Zbl

[5] Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32 (1957), 335–342. | DOI | MR | Zbl

[6] Iiyori, N.: Sharp charaters and prime graphs of finite groups. J. Algebra 163 (1994), 1–8. | DOI | MR

[7] Kondratev, A. S.: On prime graph components of finite simple groups. Mat. Sb. 180 (6) (1989), 787–797. | MR

[8] Mazurov, V. D.: The set of orders of elements in a finite group. Algebra and Logic 33 (1) (1994), 49–55. | DOI | MR | Zbl

[9] Mazurov, V. D.: Characterizations of finite groups by sets of orders of their elements. Algebra and Logic 36 (1) (1997), 23–32. | DOI | MR | Zbl

[10] Moghaddamfar, A. R., Zokayi, A. R.: Recognizing finite groups through order and degree pattern. to appear in Algebra Colloquium.

[11] Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R.: A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq. 12 (3) (2005), 431–442. | MR | Zbl

[12] Passman, D.: Permutation Groups. Benjamin Inc., New York, 1968. | MR | Zbl

[13] Shi, W. J.: A new characterization of some simple groups of Lie type. Contemp. Math. 82 (1989), 171–180. | DOI | MR | Zbl

[14] Shi, W. J.: A new characteriztion of the sporadic simple groups. Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin – New York, 1989, pp. 531–540. | MR

[15] Shi, W. J.: Pure quantitive characterization of finite simple groups (I). Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316–326. | MR

[16] Shi, W. J., Bi, J. X.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180Wi. | MR | Zbl

[17] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. | DOI | MR | Zbl

[18] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups I. Comm. Algebra 11 (1983), 2513–2518. | DOI | MR

[19] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type I. Arch. Math. 42 (1984), 344–347. | DOI | MR | Zbl

[20] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type II. J. Algebra 96 (1985), 391–396. | DOI | MR | Zbl

[21] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups II. Math. Comp. 46 (1986), 609–611, Supplement, Math. Comp., 46, 1986), S43-S46. | MR | Zbl

[22] Zhang, L. C., Shi, W. J.: $OD$-characterization of almost simple groups related to $U_{4}(3)$. to appear. | MR

[23] Zhang, L. C., Shi, W. J.: $OD$-characterization of simple $K_{4}$-groups. to appear in Algebra Colloquium (in press).