Keywords: almost simple group; prime graph; degree of a vertex; degree pattern
@article{ARM_2008_44_3_a2,
author = {Zhang, Liangcai and Shi, Wujie},
title = {OD-characterization of almost simple groups related to $L_{2}(49)$},
journal = {Archivum mathematicum},
pages = {191--199},
year = {2008},
volume = {44},
number = {3},
mrnumber = {2462974},
zbl = {1204.20006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/}
}
Zhang, Liangcai; Shi, Wujie. OD-characterization of almost simple groups related to $L_{2}(49)$. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 191-199. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a2/
[1] Chen, G. Y.: On structure of Frobenius and $2$-Frobenius group. J. Southwest China Normal Univ. 20 (5) (1995), 485–487, (in Chinese).
[2] Chen, Z. M., Shi, W. J.: On $C_{p,p}$-simple groups. J. Southwest China Normal Univ. 18 (3) (1993), 249–256, (in Chinese).
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Clarendon Press (Oxford), London – New York, 1985. | MR | Zbl
[4] Gorenstein, D.: Finite Groups. Harper and Row, New York, 1980. | MR | Zbl
[5] Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32 (1957), 335–342. | DOI | MR | Zbl
[6] Iiyori, N.: Sharp charaters and prime graphs of finite groups. J. Algebra 163 (1994), 1–8. | DOI | MR
[7] Kondratev, A. S.: On prime graph components of finite simple groups. Mat. Sb. 180 (6) (1989), 787–797. | MR
[8] Mazurov, V. D.: The set of orders of elements in a finite group. Algebra and Logic 33 (1) (1994), 49–55. | DOI | MR | Zbl
[9] Mazurov, V. D.: Characterizations of finite groups by sets of orders of their elements. Algebra and Logic 36 (1) (1997), 23–32. | DOI | MR | Zbl
[10] Moghaddamfar, A. R., Zokayi, A. R.: Recognizing finite groups through order and degree pattern. to appear in Algebra Colloquium.
[11] Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R.: A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Colloq. 12 (3) (2005), 431–442. | MR | Zbl
[12] Passman, D.: Permutation Groups. Benjamin Inc., New York, 1968. | MR | Zbl
[13] Shi, W. J.: A new characterization of some simple groups of Lie type. Contemp. Math. 82 (1989), 171–180. | DOI | MR | Zbl
[14] Shi, W. J.: A new characteriztion of the sporadic simple groups. Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin – New York, 1989, pp. 531–540. | MR
[15] Shi, W. J.: Pure quantitive characterization of finite simple groups (I). Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316–326. | MR
[16] Shi, W. J., Bi, J. X.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180Wi. | MR | Zbl
[17] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. | DOI | MR | Zbl
[18] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups I. Comm. Algebra 11 (1983), 2513–2518. | DOI | MR
[19] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type I. Arch. Math. 42 (1984), 344–347. | DOI | MR | Zbl
[20] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type II. J. Algebra 96 (1985), 391–396. | DOI | MR | Zbl
[21] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups II. Math. Comp. 46 (1986), 609–611, Supplement, Math. Comp., 46, 1986), S43-S46. | MR | Zbl
[22] Zhang, L. C., Shi, W. J.: $OD$-characterization of almost simple groups related to $U_{4}(3)$. to appear. | MR
[23] Zhang, L. C., Shi, W. J.: $OD$-characterization of simple $K_{4}$-groups. to appear in Algebra Colloquium (in press).