Left APP-property of formal power series rings
Archivum mathematicum, Tome 44 (2008) no. 3, pp. 185-189 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$ $\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.
A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$ $\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP.
Classification : 16P60, 16W60
Keywords: left APP-ring; skew power series ring; left principally quasi-Baer ring
@article{ARM_2008_44_3_a1,
     author = {Liu, Zhongkui and Yang, Xiaoyan},
     title = {Left {APP-property} of formal power series rings},
     journal = {Archivum mathematicum},
     pages = {185--189},
     year = {2008},
     volume = {44},
     number = {3},
     mrnumber = {2462973},
     zbl = {1203.16031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a1/}
}
TY  - JOUR
AU  - Liu, Zhongkui
AU  - Yang, Xiaoyan
TI  - Left APP-property of formal power series rings
JO  - Archivum mathematicum
PY  - 2008
SP  - 185
EP  - 189
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a1/
LA  - en
ID  - ARM_2008_44_3_a1
ER  - 
%0 Journal Article
%A Liu, Zhongkui
%A Yang, Xiaoyan
%T Left APP-property of formal power series rings
%J Archivum mathematicum
%D 2008
%P 185-189
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a1/
%G en
%F ARM_2008_44_3_a1
Liu, Zhongkui; Yang, Xiaoyan. Left APP-property of formal power series rings. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 185-189. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a1/

[1] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: A sheaf representation of quasi-Baer rings. J. Pure Appl. Algebra 146 (2000), 209–223. | DOI | MR | Zbl

[2] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On polynomial extensions of principally quasi-Baer rings. Kyungpook Math. J. 40 (2000), 247–254. | MR | Zbl

[3] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On quasi-Baer rings. Contemp. Math. 259 (2000), 67–92. | DOI | MR | Zbl

[4] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: Principally quasi-Baer rings. Comm. Algebra 29 (2001), 639–660. | DOI | MR | Zbl

[5] Fraser, J. A., Nicholson, W. K.: Reduced PP-rings. Math. Japon. 34 (1989), 715–725. | MR | Zbl

[6] Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168 (2002), 45–52. | DOI | MR | Zbl

[7] Liu, Z.: A note on principally quasi-Baer rings. Comm. Algebra 30 (2002), 3885–3890. | DOI | MR | Zbl

[8] Liu, Z., Ahsan, J.: PP-rings of generalized power series. Acta Math. Sinica 16 (2000), 573–578, English Series. | MR | Zbl

[9] Liu, Z., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings. Glasgow Math. J. 48 (2006), 217–229. | DOI | MR | Zbl

[10] Stenström, B.: Rings of Quotients. Springer-Verlag, Berlin, 1975. | MR

[11] Tominaga, H.: On $s$-unital rings. Math. J. Okayama Univ. 18 (1976), 117–134. | MR | Zbl