Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
Archivum mathematicum, Tome 44 (2008) no. 3, pp. 173-183 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be an arbitrary commutative ring with identity, $\operatorname{gl}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname{gl}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname{gl}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.
Let $R$ be an arbitrary commutative ring with identity, $\operatorname{gl}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname{gl}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname{gl}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.
Classification : 13C10, 17B40, 17B45
Keywords: the general linear Lie algebra; derivations of Lie algebras; commutative rings
@article{ARM_2008_44_3_a0,
     author = {Wang, Dengyin and Wang, Xian},
     title = {Derivations of the subalgebras intermediate the general linear {Lie} algebra and the diagonal subalgebra over commutative rings},
     journal = {Archivum mathematicum},
     pages = {173--183},
     year = {2008},
     volume = {44},
     number = {3},
     mrnumber = {2462972},
     zbl = {1212.13003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a0/}
}
TY  - JOUR
AU  - Wang, Dengyin
AU  - Wang, Xian
TI  - Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
JO  - Archivum mathematicum
PY  - 2008
SP  - 173
EP  - 183
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a0/
LA  - en
ID  - ARM_2008_44_3_a0
ER  - 
%0 Journal Article
%A Wang, Dengyin
%A Wang, Xian
%T Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
%J Archivum mathematicum
%D 2008
%P 173-183
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a0/
%G en
%F ARM_2008_44_3_a0
Wang, Dengyin; Wang, Xian. Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 173-183. http://geodesic.mathdoc.fr/item/ARM_2008_44_3_a0/

[1] Benkart, G. M., Osbom, J. M.: Derivations and automorphisms of non-associative matrix algebras. Trans. Amer. Math. Soc. 263 (1981), 411–430. | DOI | MR

[2] Cao, Y., Tang, Z.: Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring. Linear Algebra Appl. 360 (2003), 105–122. | MR

[3] Jøndrup, S.: Automorphisms of upper triangular matrix rings. Arch. Math. 49 (1987), 497–502. | DOI | MR

[4] Jøndrup, S.: The group of automorphisms of certain subalgebras of matrix algebras. J. Algebra 141 (1991), 106–114. | DOI | MR

[5] Jøndrup, S.: Automorphisms and derivations of upper triangular matrix rings. Linear Algebra Appl. 221 (1995), 205–218. | MR

[6] Wang, D., Ou, S., Yu, Q.: Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring. Linear and Multilinear Algebra 54 (2006), 369 – 377. | DOI | MR | Zbl

[7] Wang, D., Yu, Q.: Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring. Linear Algebra Appl. 418 (2006), 763–774. | MR | Zbl