Asymptotic properties of trinomial delay differential equations
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 149-158
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation
\[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \]
Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation
\[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \]
Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
@article{ARM_2008_44_2_a7,
author = {D\v{z}urina, Jozef and Kotorov\'a, Ren\'ata},
title = {Asymptotic properties of trinomial delay differential equations},
journal = {Archivum mathematicum},
pages = {149--158},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2432852},
zbl = {1212.34231},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/}
}
Džurina, Jozef; Kotorová, Renáta. Asymptotic properties of trinomial delay differential equations. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 149-158. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/