Asymptotic properties of trinomial delay differential equations
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 149-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation \[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \] Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation \[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \] Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
Classification : 34C10, 34K11, 34K25
Keywords: oscillation; property(A); delay argument
@article{ARM_2008_44_2_a7,
     author = {D\v{z}urina, Jozef and Kotorov\'a, Ren\'ata},
     title = {Asymptotic properties of trinomial delay differential equations},
     journal = {Archivum mathematicum},
     pages = {149--158},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2432852},
     zbl = {1212.34231},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/}
}
TY  - JOUR
AU  - Džurina, Jozef
AU  - Kotorová, Renáta
TI  - Asymptotic properties of trinomial delay differential equations
JO  - Archivum mathematicum
PY  - 2008
SP  - 149
EP  - 158
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/
LA  - en
ID  - ARM_2008_44_2_a7
ER  - 
%0 Journal Article
%A Džurina, Jozef
%A Kotorová, Renáta
%T Asymptotic properties of trinomial delay differential equations
%J Archivum mathematicum
%D 2008
%P 149-158
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/
%G en
%F ARM_2008_44_2_a7
Džurina, Jozef; Kotorová, Renáta. Asymptotic properties of trinomial delay differential equations. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 149-158. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a7/

[1] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations . Dyn. Syst. Appl. 9 (2000), 483–500. | MR

[2] Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Company, New York-London, 1953. | MR | Zbl

[3] Cecchi, M., Došlá, Z., Marini, M.: On the third order differential equations with property A and B. J. Math. Anal. Appl. 231 (1999), 509–525. | DOI | MR

[4] Cecchi, M., Marini, M., Villari, G.: On the monotonicity property for a certain class of second order differential equations. J. Differential Equations 82 (1989), 15–27. | DOI | MR | Zbl

[5] Chanturia, T. A., Kiguradze, I. T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow, 1990, in Russian.

[6] Džurina, J.: Asymptotic properties of the third order delay differential equations. Nonlinear Analysis 26 (1996), 33–39. | DOI | MR

[7] Džurina, J.: Comparison theorems for functional differential equations. EDIS Žilina, 2002.

[8] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 1992 (42), 299–315. | MR

[9] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation. Pacific J. Math. 1976 (64), 369–385. | MR

[10] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York - London - Sydney, 1964. | MR | Zbl

[11] Jones, G. D.: An asymptotic property of solutions $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)$ $y=0$. Pacific J. Math. 47 (1973), 135–138. | MR

[12] Kiguradze, I. T.: On the oscillation of solutions of the equation $\frac{d^mu}{dt^m} +a(t)|u|^n sign\,u = 0$. Mat. Sb. 65 (1964), 172–187, in Russian. | MR | Zbl

[13] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. | DOI | MR | Zbl

[14] Kusano, T., Naito, M., Tanaka, K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. Proc. Roy. Soc. Edinburg 90 (1981), 25–40. | MR

[15] Lacková, D.: The asymptotic properties of the solutions of $n$-th order neutral differential equations. Arch. Math. (Brno) 39 (2003), 179–185.

[16] Lazer, A. C.: The behavior of solutions of the differential equation $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)\,y=0$. Pacific J. Math. 17 (1966), 435–466. | DOI | MR | Zbl

[17] Mahfoud, W. E.: Comparison theorems for delay differential equations. Pacific J. Math. 83 (1979), 187–197. | DOI | MR | Zbl

[18] Parhi, N., Padhi, S.: On asymptotic behaviour of delay differential equations of third order. Nonlinear Anal. 34 (1998), 391–403. | DOI | MR

[19] Skerlík, A.: Integral criteria of oscillation for the third order linear differential equations. Math. Slovaca 45 (1995), 403–412. | MR

[20] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319–327. | DOI | MR | Zbl

[21] Trench, W. F.: Eventual disconjugacy of linear differential equation. Proc. Amer. Math. Soc. 83 (1983), 461–466. | DOI | MR