Invariance of $g$-natural metrics on linear frame bundles
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
Classification : 53C07, 53C20, 53C21, 53C40
Keywords: Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity
@article{ARM_2008_44_2_a6,
     author = {Kowalski, Old\v{r}ich and Sekizawa, Masami},
     title = {Invariance of $g$-natural metrics on linear frame bundles},
     journal = {Archivum mathematicum},
     pages = {139--147},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2432851},
     zbl = {1212.53042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
AU  - Sekizawa, Masami
TI  - Invariance of $g$-natural metrics on linear frame bundles
JO  - Archivum mathematicum
PY  - 2008
SP  - 139
EP  - 147
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/
LA  - en
ID  - ARM_2008_44_2_a6
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%A Sekizawa, Masami
%T Invariance of $g$-natural metrics on linear frame bundles
%J Archivum mathematicum
%D 2008
%P 139-147
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/
%G en
%F ARM_2008_44_2_a6
Kowalski, Oldřich; Sekizawa, Masami. Invariance of $g$-natural metrics on linear frame bundles. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/

[1] Abbassi, M. T. K.: Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifolds $(M,g)$. Comment. Math. Univ. Carolin. 45 (2004), 591–596. | MR

[2] Cordero, L. A., de León, M.: Lifts of tensor fields to the frame bundle. Rend. Circ. Mat. Palermo 32 (1983), 236–271. | DOI | MR

[3] Cordero, L. A., de León, M.: On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold. J. Math. Pures Appl. 65 (1986), 81–91. | MR

[4] Cordero, L. A., Dodson, C. T. J., de León, M.: Differential Geometry of Frame Bundles. Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. | MR

[5] Jensen, G.: The scalar curvature of left invariant Riemannian metrics. Indiana Univ. Math. J. 20 (1971), 1125–1143. | DOI | MR | Zbl

[6] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin-Heidelberg-New York, 1993. | MR

[7] Kowalski, O., Sekizawa, M.: Invariance of $g$-natural metrics on tangent bundles. to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific. | MR

[8] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles. to appear in Math. Nachr. | MR | Zbl

[9] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles II. to appear in Ann. Global Anal. Geom. | MR | Zbl

[10] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification. Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987. | MR | Zbl

[11] Kowalski, O., Sekizawa, M.: On curvatures of linear frame bundles with naturally lifted metrics. Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295. | MR | Zbl

[12] Krupka, D.: Elementary theory of differential invariants. Arch. Math. (Brno) 4 (1978), 207–214. | MR | Zbl

[13] Krupka, D.: Differential invariants. Lecture Notes, Faculty of Science, Purkyně University, Brno (1979).

[14] Krupka, D., Janyška, J.: Lectures on Differential Invariants. University J. E. Purkyně in Brno, 1990. | MR

[15] Krupka, D., V. Mikolášová, : On the uniqueness of some differential invariants: $d$, [ , ], $\nabla $. Czechoslovak Math. J. 34 (1984), 588–597. | MR

[16] Mok, K. P.: On the differential geometry of frame bundles of Riemannian manifolds. J. Reine Angew. Math. 302 (1978), 16–31. | MR | Zbl

[17] O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469. | DOI | MR

[18] Zou, X.: A new type of homogeneous spaces and the Einstein metrics on $O(n+1)$. Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78. | MR | Zbl