Invariance of $g$-natural metrics on linear frame bundles
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
Classification :
53C07, 53C20, 53C21, 53C40
Keywords: Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity
Keywords: Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity
@article{ARM_2008_44_2_a6,
author = {Kowalski, Old\v{r}ich and Sekizawa, Masami},
title = {Invariance of $g$-natural metrics on linear frame bundles},
journal = {Archivum mathematicum},
pages = {139--147},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2432851},
zbl = {1212.53042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/}
}
Kowalski, Oldřich; Sekizawa, Masami. Invariance of $g$-natural metrics on linear frame bundles. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a6/