Complete spacelike hypersurfaces with constant scalar curvature
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 105-114 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we characterize the $n$-dimensional $(n\ge 3)$ complete spacelike hypersurfaces $M^n$ in a de Sitter space $S^{n+1}_1$ with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that $M^n$ is a locus of moving $(n-1)$-dimensional submanifold $M^{n-1}_1(s)$, along $M^{n-1}_1(s)$ the principal curvature $\lambda $ of multiplicity $n-1$ is constant and $M^{n-1}_1(s)$ is umbilical in $S^{n+1}_1$ and is contained in an $(n-1)$-dimensional sphere $S^{n-1}\big (c(s)\big )=E^n(s)\cap S^{n+1}_1$ and is of constant curvature $\big (\frac{d\lbrace \log |\lambda ^2-(1-R)|^{1/n}\rbrace }{ds}\big )^2-\lambda ^2+1$,where $s$ is the arc length of an orthogonal trajectory of the family $M^{n-1}_1(s)$, $E^n(s)$ is an $n$-dimensional linear subspace in $R^{n+2}_1$ which is parallel to a fixed $E^n(s_0)$ and $u=\big |\lambda ^2-(1-R)\big |^{-\frac{1}{n}}$ satisfies the ordinary differental equation of order 2, $\frac{d^2u}{ds^2}-u\big (\pm \frac{n-2}{2}\frac{1}{u^n}+R-2\big )=0$.
In this paper, we characterize the $n$-dimensional $(n\ge 3)$ complete spacelike hypersurfaces $M^n$ in a de Sitter space $S^{n+1}_1$ with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that $M^n$ is a locus of moving $(n-1)$-dimensional submanifold $M^{n-1}_1(s)$, along $M^{n-1}_1(s)$ the principal curvature $\lambda $ of multiplicity $n-1$ is constant and $M^{n-1}_1(s)$ is umbilical in $S^{n+1}_1$ and is contained in an $(n-1)$-dimensional sphere $S^{n-1}\big (c(s)\big )=E^n(s)\cap S^{n+1}_1$ and is of constant curvature $\big (\frac{d\lbrace \log |\lambda ^2-(1-R)|^{1/n}\rbrace }{ds}\big )^2-\lambda ^2+1$,where $s$ is the arc length of an orthogonal trajectory of the family $M^{n-1}_1(s)$, $E^n(s)$ is an $n$-dimensional linear subspace in $R^{n+2}_1$ which is parallel to a fixed $E^n(s_0)$ and $u=\big |\lambda ^2-(1-R)\big |^{-\frac{1}{n}}$ satisfies the ordinary differental equation of order 2, $\frac{d^2u}{ds^2}-u\big (\pm \frac{n-2}{2}\frac{1}{u^n}+R-2\big )=0$.
Classification : 53C20, 53C42
Keywords: de Sitter space; spacelike hypersurface; scalar curvature; principal curvature; umbilical
@article{ARM_2008_44_2_a2,
     author = {Shu, Schi Chang},
     title = {Complete spacelike hypersurfaces with constant scalar curvature},
     journal = {Archivum mathematicum},
     pages = {105--114},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2432847},
     zbl = {1212.53084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a2/}
}
TY  - JOUR
AU  - Shu, Schi Chang
TI  - Complete spacelike hypersurfaces with constant scalar curvature
JO  - Archivum mathematicum
PY  - 2008
SP  - 105
EP  - 114
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a2/
LA  - en
ID  - ARM_2008_44_2_a2
ER  - 
%0 Journal Article
%A Shu, Schi Chang
%T Complete spacelike hypersurfaces with constant scalar curvature
%J Archivum mathematicum
%D 2008
%P 105-114
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a2/
%G en
%F ARM_2008_44_2_a2
Shu, Schi Chang. Complete spacelike hypersurfaces with constant scalar curvature. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 105-114. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a2/

[1] Brasil, A., Jr., , Colares, A. G., Palmas, O.: Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap Theorem. Illinois J. Math. 47 (3) (2003), 847–866. | MR | Zbl

[2] Cheng, Q. M.: Complete hypersurfaces in a Euclidean space $R^{n+1}$ with constant scalar curvature. Indiana Univ. Math. J. 51 (2002), 53–68. | DOI | MR

[3] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math. 92 (1970), 145–173. | DOI | MR | Zbl

[4] Shu, S. C.: Complete spacelike hypersurfaces in a de Sitter space. Bull. Austral. Math. Soc. 73 (2006), 9–16. | DOI | MR | Zbl

[5] Zheng, Y.: On spacelike hypersurfaces in the de Sitter spaces. Ann. Global Anal. Geom. 13 (1995), 317–321. | DOI | MR

[6] Zheng, Y.: Spacelike hypersurfaces with constant scalar curvature in the de Sitter spaces. Differential Geom. Appl. 6 (1996), 51–54. | DOI | MR