Keywords: continuation principle; coincidence degree; second order differential systems; bound sets; Floquet type boundary conditions
@article{ARM_2008_44_2_a1,
author = {Taddei, Valentina},
title = {Two-points boundary value problems for {Carath\'eodory} second order equations},
journal = {Archivum mathematicum},
pages = {93--103},
year = {2008},
volume = {44},
number = {2},
mrnumber = {2432846},
zbl = {1212.34039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/}
}
Taddei, Valentina. Two-points boundary value problems for Carathéodory second order equations. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 93-103. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/
[1] Andres, J., Malaguti, L., Taddei, V.: Bounded solutions of Carathéodory differential inclusions: a bound sets approach. Abstr. Appl. Anal. 9 (2003), 547–571. | DOI | MR | Zbl
[2] Andres, J., Malaguti, L., Taddei, V.: A bounding function approach to multivalued boundary values problems. Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. | MR
[3] Erbe, L., Palamides, P. K.: Boundary value problems for second order differential systems. J. Math. Anal. Appl. 127 (1) (1987), 80–92. | DOI | MR | Zbl
[4] Erbe, L., Schmitt, K.: Boundary value problems for second order differential equations. Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. | MR | Zbl
[5] Gaines, R .E., Mawhin, J.: Coincidence degree and nonlinear differential equations. Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). | MR | Zbl
[6] Hartman, P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1969. | MR
[7] Lloyd, N. G.: Degree Theory. Cambridge University Press, Cambridge, 1978. | MR | Zbl
[8] Mawhin, J.: Boundary value problems for nonlinear second order vector differential equations. J. Differential Equations 16 (1974), 257–269. | DOI | MR | Zbl
[9] Mawhin, J.: The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations. Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. | MR
[10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). | MR | Zbl
[11] Mawhin, J., Thompson, H. B.: Periodic or bounded solutions of Carathéodory systems of ordinary differential equations. J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. | DOI | MR | Zbl
[12] Mawhin, J., Ward Jr., J. R.: Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. | MR | Zbl
[13] Scorza Dragoni, G.: Intorno a un criterio di esistenza per un problema di valori ai limiti. Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325.
[14] Taddei, V., Zanolin, F.: Bound sets and two-points boundary value problems for second order differential equations. Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). | MR
[15] Thompson, H. B.: Existence of solutions for a two-point boundary value problem. Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. | DOI | MR | Zbl