Two-points boundary value problems for Carathéodory second order equations
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 93-103 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions.
Using a suitable version of Mawhin’s continuation principle, we obtain an existence result for the Floquet boundary value problem for second order Carathéodory differential equations by means of strictly localized $ C^2 $ bounding functions.
Classification : 34B15, 47H10, 47N20
Keywords: continuation principle; coincidence degree; second order differential systems; bound sets; Floquet type boundary conditions
@article{ARM_2008_44_2_a1,
     author = {Taddei, Valentina},
     title = {Two-points boundary value problems for {Carath\'eodory} second order equations},
     journal = {Archivum mathematicum},
     pages = {93--103},
     year = {2008},
     volume = {44},
     number = {2},
     mrnumber = {2432846},
     zbl = {1212.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/}
}
TY  - JOUR
AU  - Taddei, Valentina
TI  - Two-points boundary value problems for Carathéodory second order equations
JO  - Archivum mathematicum
PY  - 2008
SP  - 93
EP  - 103
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/
LA  - en
ID  - ARM_2008_44_2_a1
ER  - 
%0 Journal Article
%A Taddei, Valentina
%T Two-points boundary value problems for Carathéodory second order equations
%J Archivum mathematicum
%D 2008
%P 93-103
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/
%G en
%F ARM_2008_44_2_a1
Taddei, Valentina. Two-points boundary value problems for Carathéodory second order equations. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 93-103. http://geodesic.mathdoc.fr/item/ARM_2008_44_2_a1/

[1] Andres, J., Malaguti, L., Taddei, V.: Bounded solutions of Carathéodory differential inclusions: a bound sets approach. Abstr. Appl. Anal. 9 (2003), 547–571. | DOI | MR | Zbl

[2] Andres, J., Malaguti, L., Taddei, V.: A bounding function approach to multivalued boundary values problems. Set-valued Methods in Dynamic Systems, Special Issue of Dynam. Systems Appl. 16 (2007), 37–48. | MR

[3] Erbe, L., Palamides, P. K.: Boundary value problems for second order differential systems. J. Math. Anal. Appl. 127 (1) (1987), 80–92. | DOI | MR | Zbl

[4] Erbe, L., Schmitt, K.: Boundary value problems for second order differential equations. Nonlinear Anal. Appl., Proc. 7th Int. Conf. (Arlington 1986), Lect. Notes Pure Appl. Math. 109 (1987), 179–184. | MR | Zbl

[5] Gaines, R .E., Mawhin, J.: Coincidence degree and nonlinear differential equations. Lectures Notes in Math., Springer–Verlag, Berlin 586 (1977). | MR | Zbl

[6] Hartman, P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1969. | MR

[7] Lloyd, N. G.: Degree Theory. Cambridge University Press, Cambridge, 1978. | MR | Zbl

[8] Mawhin, J.: Boundary value problems for nonlinear second order vector differential equations. J. Differential Equations 16 (1974), 257–269. | DOI | MR | Zbl

[9] Mawhin, J.: The Bernstein-Nagumo problem and two-point boundary value problem for ordinary differential equations, Qualitative theory of differential equations. Colloq. Math. Soc. János Bolyai, Szeged 30 II (1979), 709–740. | MR

[10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Series, Amer. Math. Soc., Providence, RI 40 (1979). | MR | Zbl

[11] Mawhin, J., Thompson, H. B.: Periodic or bounded solutions of Carathéodory systems of ordinary differential equations. J. Dynam. Differential Equations 15 (2-3) (2003), 327–334. | DOI | MR | Zbl

[12] Mawhin, J., Ward Jr., J. R.: Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete Contin. Dynam. Systems 8 (1) (2002), 39–54. | MR | Zbl

[13] Scorza Dragoni, G.: Intorno a un criterio di esistenza per un problema di valori ai limiti. Rend. Accad. Naz. Lincei 28 (6) (1938), 317–325.

[14] Taddei, V., Zanolin, F.: Bound sets and two-points boundary value problems for second order differential equations. Georg. Math. J., Special issue dedicated to 70th birthday of Prof. I. Kiguradze 14 (2) (2007). | MR

[15] Thompson, H. B.: Existence of solutions for a two-point boundary value problem. Rend. Circ. Mat. Palermo (2) 35 (2) (1986), 261–275. | DOI | MR | Zbl