Keywords: semi-symmetric metric connection; Levi-Civita connection; mean curvature; Ricci tensor; conformally flat
@article{ARM_2008_44_1_a8,
author = {Y\"ucesan, Ahmet and Ayyildiz, Nihat},
title = {Non-degenerate hypersurfaces {of~a~semi-Riemannian} manifold with~a~semi-symmetric metric connection},
journal = {Archivum mathematicum},
pages = {77--88},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2431233},
zbl = {1212.53023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a8/}
}
TY - JOUR AU - Yücesan, Ahmet AU - Ayyildiz, Nihat TI - Non-degenerate hypersurfaces of a semi-Riemannian manifold with a semi-symmetric metric connection JO - Archivum mathematicum PY - 2008 SP - 77 EP - 88 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a8/ LA - en ID - ARM_2008_44_1_a8 ER -
Yücesan, Ahmet; Ayyildiz, Nihat. Non-degenerate hypersurfaces of a semi-Riemannian manifold with a semi-symmetric metric connection. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a8/
[1] Agricola, I., Friedrich, Th.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328 (4) (2004), 711–748. | DOI | MR | Zbl
[2] Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée $($deuxiéme partie$)$. Ann. Ecole Norm. Sup. 42 (1925), 17–88. | MR
[3] Duggal, K., Sharma, R.: Semi-symmetric metric connections in a semi-Riemannian manifold. Indian J. Pure Appl. Math. 17 (11) (1986), 1276–1282. | MR | Zbl
[4] Friedmann, A., Schouten, J. A.: Über die Geometrie der halbsymmetrischen Übertragungen. Math. Z. 21 (1924), 211–223. | DOI | MR
[5] Hayden, H. A.: Subspace of a space with torsion. Proc. London Math. Soc. 34 (1932), 27–50.
[6] Imai, T.: Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection. Tensor (N.S.) 23 (1972), 300–306. | MR | Zbl
[7] Imai, T.: Notes on semi-symmetric metric connections. Tensor (N.S.) 24 (1972), 293–296. | MR | Zbl
[8] Konar, A., Biswas, B.: Lorentzian manifold that admits a type of semi-symmetric metric connection. Bull. Calcutta Math. Soc. 93 (5) (2001), 427–437. | MR | Zbl
[9] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press, London, 1983. | MR
[10] Yano, K.: On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. | MR | Zbl