Keywords: abelian groups; countable factor-groups; $p^{\omega +n}$-projective groups
@article{ARM_2008_44_1_a4,
author = {Danchev, Peter},
title = {Notes on countable extensions of~$p^{\omega +n}$-projectives},
journal = {Archivum mathematicum},
pages = {37--40},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2431229},
zbl = {1203.20046},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/}
}
Danchev, Peter. Notes on countable extensions of $p^{\omega +n}$-projectives. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 37-40. http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/
[1] Danchev, P.: Countable extensions of torsion abelian groups. Arch. Math. (Brno) 41 (3) (2005), 265–272. | MR | Zbl
[2] Danchev, P.: Generalized Dieudonné criterion. Acta Math. Univ. Comenian. 74 (1) (2005), 15–26. | MR | Zbl
[3] Danchev, P.: A note on the countable extensions of separable $p^{\omega +n}$-projective abelian $p$-groups. Arch. Math. (Brno) 42 (3) (2006), 251–254. | MR | Zbl
[4] Danchev, P.: On countable extensions of primary abelian groups. Arch. Math. (Brno) 43 (1) (2007), 61–66. | MR | Zbl
[5] Danchev, P., Keef, P.: Generalized Wallace theorems. Math. Scand. (to appear). | MR
[6] Dieudonné, J.: Sur les $p$-groupes abeliens infinis. Portugal. Math. 11 (1) (1952), 1–5. | MR
[7] Fuchs, L.: Infinite Abelian Groups, I, II. Mir, Moskva, 1974 and 1977, (in Russian). | MR
[8] Fuchs, L.: Subfree valued vector spaces. Lecture Notes in Math. 616 (1977), 158–167. | DOI | MR | Zbl
[9] Hill, P., Megibben, C.: Extensions of torsion-complete groups. Proc. Amer. Math. Soc. 44 (2) (1974), 259–262. | DOI | MR | Zbl
[10] Nunke, R.: Topics in Abelian Groups. ch. Purity and subfunctors of the identity, pp. 121–171, Scott, Foresman and Co., Chicago, 1963. | MR
[11] Nunke, R.: Homology and direct sums of countable abelian groups. Math. Z. 101 (3) (1967), 182–212. | DOI | MR | Zbl
[12] Wallace, K.: On mixed groups of torsion-free rank one with totally projective primary components. J. Algebra 17 (4) (1971), 482–488. | DOI | MR | Zbl