Notes on countable extensions of $p^{\omega +n}$-projectives
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 37-40 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that if $G$ is an Abelian $p$-group of length not exceeding $\omega $ and $H$ is its $p^{\omega +n}$-projective subgroup for $n\in {\mathbb{N}} \cup \lbrace 0\rbrace $ such that $G/H$ is countable, then $G$ is also $p^{\omega +n}$-projective. This enlarges results of ours in (Arch. Math. (Brno), 2005, 2006 and 2007) as well as a classical result due to Wallace (J. Algebra, 1971).
We prove that if $G$ is an Abelian $p$-group of length not exceeding $\omega $ and $H$ is its $p^{\omega +n}$-projective subgroup for $n\in {\mathbb{N}} \cup \lbrace 0\rbrace $ such that $G/H$ is countable, then $G$ is also $p^{\omega +n}$-projective. This enlarges results of ours in (Arch. Math. (Brno), 2005, 2006 and 2007) as well as a classical result due to Wallace (J. Algebra, 1971).
Classification : 20K10, 20K25, 20K27, 20K35, 20K40
Keywords: abelian groups; countable factor-groups; $p^{\omega +n}$-projective groups
@article{ARM_2008_44_1_a4,
     author = {Danchev, Peter},
     title = {Notes on countable extensions of~$p^{\omega +n}$-projectives},
     journal = {Archivum mathematicum},
     pages = {37--40},
     year = {2008},
     volume = {44},
     number = {1},
     mrnumber = {2431229},
     zbl = {1203.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - Notes on countable extensions of $p^{\omega +n}$-projectives
JO  - Archivum mathematicum
PY  - 2008
SP  - 37
EP  - 40
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/
LA  - en
ID  - ARM_2008_44_1_a4
ER  - 
%0 Journal Article
%A Danchev, Peter
%T Notes on countable extensions of $p^{\omega +n}$-projectives
%J Archivum mathematicum
%D 2008
%P 37-40
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/
%G en
%F ARM_2008_44_1_a4
Danchev, Peter. Notes on countable extensions of $p^{\omega +n}$-projectives. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 37-40. http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a4/

[1] Danchev, P.: Countable extensions of torsion abelian groups. Arch. Math. (Brno) 41 (3) (2005), 265–272. | MR | Zbl

[2] Danchev, P.: Generalized Dieudonné criterion. Acta Math. Univ. Comenian. 74 (1) (2005), 15–26. | MR | Zbl

[3] Danchev, P.: A note on the countable extensions of separable $p^{\omega +n}$-projective abelian $p$-groups. Arch. Math. (Brno) 42 (3) (2006), 251–254. | MR | Zbl

[4] Danchev, P.: On countable extensions of primary abelian groups. Arch. Math. (Brno) 43 (1) (2007), 61–66. | MR | Zbl

[5] Danchev, P., Keef, P.: Generalized Wallace theorems. Math. Scand. (to appear). | MR

[6] Dieudonné, J.: Sur les $p$-groupes abeliens infinis. Portugal. Math. 11 (1) (1952), 1–5. | MR

[7] Fuchs, L.: Infinite Abelian Groups, I, II. Mir, Moskva, 1974 and 1977, (in Russian). | MR

[8] Fuchs, L.: Subfree valued vector spaces. Lecture Notes in Math. 616 (1977), 158–167. | DOI | MR | Zbl

[9] Hill, P., Megibben, C.: Extensions of torsion-complete groups. Proc. Amer. Math. Soc. 44 (2) (1974), 259–262. | DOI | MR | Zbl

[10] Nunke, R.: Topics in Abelian Groups. ch. Purity and subfunctors of the identity, pp. 121–171, Scott, Foresman and Co., Chicago, 1963. | MR

[11] Nunke, R.: Homology and direct sums of countable abelian groups. Math. Z. 101 (3) (1967), 182–212. | DOI | MR | Zbl

[12] Wallace, K.: On mixed groups of torsion-free rank one with totally projective primary components. J. Algebra 17 (4) (1971), 482–488. | DOI | MR | Zbl