The jet prolongations of $2$-fibred manifolds and the flow operator
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
Classification :
58A20
Keywords: $(s, r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
Keywords: $(s, r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
@article{ARM_2008_44_1_a2,
author = {Mikulski, W{\l}odzimierz M.},
title = {The jet prolongations of $2$-fibred manifolds and~the~flow~operator},
journal = {Archivum mathematicum},
pages = {17--21},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2431227},
zbl = {1212.58003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a2/}
}
Mikulski, Włodzimierz M. The jet prolongations of $2$-fibred manifolds and the flow operator. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21. http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a2/
[1] Cabras, A., Janyška, J., Kolář, I.: On the geometry of variational calculus on some functional bundles. Note Mat. 26 (2) (2006), 51–57. | MR | Zbl
[2] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag Berlin, 1993. | MR
[3] Mikulski, W. M.: The jet prolongations of fibered manifolds and the flow operator. Publ. Math. Debrecen 59 (2001), 441–458. | MR
[4] Mikulski, W. M.: The natural operators lifting projectable vector fields to some fiber product preserving bundles. Ann. Polon. Math. 81 (3) (2003), 261–271. | DOI | MR | Zbl