Keywords: multiple solutions; Leggett-Williams fixed point theorem; nonlinear boundary value problem; integral boundary conditions
@article{ARM_2008_44_1_a0,
author = {Belarbi, Abdelkader and Benchohra, Mouffak and Ouahab, Abdelghani},
title = {Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions},
journal = {Archivum mathematicum},
pages = {1--7},
year = {2008},
volume = {44},
number = {1},
mrnumber = {2431225},
zbl = {1212.34051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a0/}
}
TY - JOUR AU - Belarbi, Abdelkader AU - Benchohra, Mouffak AU - Ouahab, Abdelghani TI - Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions JO - Archivum mathematicum PY - 2008 SP - 1 EP - 7 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a0/ LA - en ID - ARM_2008_44_1_a0 ER -
%0 Journal Article %A Belarbi, Abdelkader %A Benchohra, Mouffak %A Ouahab, Abdelghani %T Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions %J Archivum mathematicum %D 2008 %P 1-7 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a0/ %G en %F ARM_2008_44_1_a0
Belarbi, Abdelkader; Benchohra, Mouffak; Ouahab, Abdelghani. Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/ARM_2008_44_1_a0/
[1] Agarwal, R. P., O’Regan, D.: Existence of three solutions to integral and discrete equations via the Leggett-Williams fixed point theorem. Rocky Mountain J. Math. 31 (2001), 23–35. | DOI | MR | Zbl
[2] Agarwal, R. P., O’Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht, 1999. | MR
[3] Ahmad, B, Khan, R. A., Sivasundaram, S.: Generalized quasilinearization method for a first order differential equation with integral boundary condition. Dynam. Contin. Discrete Impuls. Systems, Ser. A Math. Anal. 12 (2005), 289–296. | MR | Zbl
[4] Anderson, D., Avery, R., Peterson, A.: Three positive solutions to a discrete focal boundary value problem. Positive solutions of nonlinear problems. J. Comput. Appl. Math. 88 (1998), 103–118. | DOI | MR
[5] Brykalov, S. A.: A second order nonlinear problem with two-point and integral boundary conditions. Georgian Math. J. 1 (1994), 243–249. | DOI | Zbl
[6] Denche, M., Marhoune, A. L.: High-order mixed-type differential equations with weighted integral boundary conditions. Electron. J. Differential Equations 60 (2000), 1–10. | MR | Zbl
[7] Gallardo, J. M.: Second-order differential operators with integral boundary conditions and generation of analytic semigroups. Rocky Mountain J. Math. 30 (2000), 265–1291. | MR | Zbl
[8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988. | MR | Zbl
[9] Karakostas, G. L., Tsamatos, P. Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differential Equations 30 (2002), 17. | MR | Zbl
[10] Khan, R. A.: The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 19 (2003), 15. | MR | Zbl
[11] Krall, A. M.: The adjoint of a differential operator with integral boundary condition. Proc. Amer. Math. Soc. 16 (1965), 738–742. | DOI | MR
[12] Leggett, R. W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979), 673–688. | DOI | MR | Zbl
[13] Lomtatidze, A., Malaguti, L.: On a nonlocal boundary value problem for second order nonlinear singular differential equations. Georgian Math. J. 7 (2000), 133–154. | MR | Zbl