Keywords: finite type; Catlin’s multitype; model hypersurfaces; biholomorphic equivalence; decoupled domains
@article{ARM_2007_43_5_a9,
author = {Kol\'a\v{r}, Martin},
title = {On local geometry of finite multitype hypersurfaces},
journal = {Archivum mathematicum},
pages = {459--466},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381788},
zbl = {1199.32042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a9/}
}
Kolář, Martin. On local geometry of finite multitype hypersurfaces. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a9/
[1] Bloom T., Graham I.: A geometric characterization of points of type $m$ on real submanifolds of $C^{n}$. J. Differential Geometry 12 (1977), no. 2, 171–182. | MR
[2] Bloom T.: On the contact between complex manifolds and real hyp in $C^{3}$. Trans. Amer. Math. Soc. 263 (1981), no. 2, 515–529. | MR
[3] Boas H. P., Straube E. J., Yu J. Y.: Boundary limits of the Bergman kernel and metric. Michigan Math. J. 42 (1995), no. 3, 449–461. | MR | Zbl
[4] Catlin D.: Boundary invariants of pseudoconvex domains. Ann. Math. 120 (1984), 529–586. | MR | Zbl
[5] D’Angelo J.: Orders od contact, real hypersurfaces and applications. Ann. Math. 115 (1982), 615–637. | MR
[6] Diedrich K., Herbort G.: Pseudoconvex domains of semiregular type. in Contributions to Complex Analysis and Analytic geometry (1994), 127–161. | MR
[7] Diedrich K., Herbort G.: An alternative proof of a theorem by Boas-Straube-Yu. in Complex Analysis and Geometry, Trento 1995, Pitman Research Notes Math. Ser.
[8] Fornaess J. E., Stensones B.: Lectures on Counterexamples in Several Complex Variables. Princeton Univ. Press 1987. | MR
[9] Isaev A., Krantz S. G.: Domains with non-compact automorphism groups: a survey. Adv. Math. 146 (1999), 1–38. | MR
[10] Kohn J. J.: Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542. | MR
[11] Kolář M.: Convexifiability and supporting functions in ${\mathbb{C}}^2$. Math. Res. Lett. 2 (1995), 505–513. | MR
[12] Kolář M.: Generalized models and local invariants of Kohn Nirenberg domains. to appear in Math. Z. | MR | Zbl
[13] Kolář M.: On local convexifiability of type four domains in ${\mathbb{C}}^2$. Differential Geometry and Applications, Proceeding of Satellite Conference of ICM in Berlin 1999, 361–371. | MR
[14] Kolář M.: Necessary conditions for local convexifiability of pseudoconvex domains in ${\mathbb{C}}^2$. Rend. Circ. Mat. Palermo 69 (2002), 109–116. | MR
[15] Kolář M.: Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$. Math. Res. Lett. 12 (2005), 523–542.
[16] Nikolov N.: Biholomorphy of the model domains at a semiregular boundary point. C.R. Acad. Bulgare Sci. 55 (2002), no. 5, 5–8. | MR | Zbl
[17] Yu J.: Peak functions on weakly pseudoconvex domains. Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295. | MR | Zbl