Homogeneous Cartan geometries
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 431-442 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.
We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.
Classification : 53A30, 53B15, 53C29, 53C30, 53Cxx
Keywords: Cartan geometry; homogeneous space; infinitesimal automorphism; holonomy; conformal geometry
@article{ARM_2007_43_5_a7,
     author = {Hammerl, Matthias},
     title = {Homogeneous {Cartan} geometries},
     journal = {Archivum mathematicum},
     pages = {431--442},
     year = {2007},
     volume = {43},
     number = {5},
     mrnumber = {2381786},
     zbl = {1199.53021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/}
}
TY  - JOUR
AU  - Hammerl, Matthias
TI  - Homogeneous Cartan geometries
JO  - Archivum mathematicum
PY  - 2007
SP  - 431
EP  - 442
VL  - 43
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/
LA  - en
ID  - ARM_2007_43_5_a7
ER  - 
%0 Journal Article
%A Hammerl, Matthias
%T Homogeneous Cartan geometries
%J Archivum mathematicum
%D 2007
%P 431-442
%V 43
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/
%G en
%F ARM_2007_43_5_a7
Hammerl, Matthias. Homogeneous Cartan geometries. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 431-442. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/

[1] Ambrose W., Singer I. M.: A theorem on holonomy. Trans. Amer. Math. Soc. 75 (1953), 428–443. | MR | Zbl

[2] Armstrong S.: Definite signature conformal holonomy: a complete classification. 2005. math.DG/0503388.

[3] Čap A.: Infinitesimal automorphisms and deformations of parabolic geometries. 2005, to appear in J. Europ. Math. Soc. math.DG/0508535. | MR | Zbl

[4] Čap A.: On left invariant CR structures on SU(2). 2006. math.DG/0603730. | MR | Zbl

[5] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29(3) (2000), 453–505. | MR | Zbl

[6] Čap A., and Slovák J.: Parabolic Geometries. Book in preparation.

[7] Cartan É.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. (2) (1923), 172–202.

[8] Hammerl M.: Homogeneous Cartan geometries. Diploma thesis, 2006. http://www.mat.univie.ac.at/~cap/files/Hammerl.pdf | MR | Zbl

[9] Leitner F.: Conformal holonomy of bi-invariant metrics. 2004. math.DG/0406299. | Zbl

[10] Michor P.: Topics in Differential Geometry. Book in preparation. http://www.mat.univie.ac.at/~michor/dgbook.ps | MR | Zbl

[11] Tanaka N.: On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. (1979), 23–84. | MR

[12] Wang H.-Ch.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13 (1958), 1–19. | MR | Zbl

[13] Yamaguchi K.: Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. (1993), 413–494. | MR | Zbl