Keywords: Cartan geometry; homogeneous space; infinitesimal automorphism; holonomy; conformal geometry
@article{ARM_2007_43_5_a7,
author = {Hammerl, Matthias},
title = {Homogeneous {Cartan} geometries},
journal = {Archivum mathematicum},
pages = {431--442},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381786},
zbl = {1199.53021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/}
}
Hammerl, Matthias. Homogeneous Cartan geometries. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 431-442. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a7/
[1] Ambrose W., Singer I. M.: A theorem on holonomy. Trans. Amer. Math. Soc. 75 (1953), 428–443. | MR | Zbl
[2] Armstrong S.: Definite signature conformal holonomy: a complete classification. 2005. math.DG/0503388.
[3] Čap A.: Infinitesimal automorphisms and deformations of parabolic geometries. 2005, to appear in J. Europ. Math. Soc. math.DG/0508535. | MR | Zbl
[4] Čap A.: On left invariant CR structures on SU(2). 2006. math.DG/0603730. | MR | Zbl
[5] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29(3) (2000), 453–505. | MR | Zbl
[6] Čap A., and Slovák J.: Parabolic Geometries. Book in preparation.
[7] Cartan É.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. (2) (1923), 172–202.
[8] Hammerl M.: Homogeneous Cartan geometries. Diploma thesis, 2006. http://www.mat.univie.ac.at/~cap/files/Hammerl.pdf | MR | Zbl
[9] Leitner F.: Conformal holonomy of bi-invariant metrics. 2004. math.DG/0406299. | Zbl
[10] Michor P.: Topics in Differential Geometry. Book in preparation. http://www.mat.univie.ac.at/~michor/dgbook.ps | MR | Zbl
[11] Tanaka N.: On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. (1979), 23–84. | MR
[12] Wang H.-Ch.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13 (1958), 1–19. | MR | Zbl
[13] Yamaguchi K.: Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. (1993), 413–494. | MR | Zbl