Commuting linear operators and algebraic decompositions
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 373-387 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For commuting linear operators $P_0,P_1,\dots ,P_\ell $ we describe a range of conditions which are weaker than invertibility. When any of these conditions hold we may study the composition $P=P_0P_1\cdots P_\ell $ in terms of the component operators or combinations thereof. In particular the general inhomogeneous problem $Pu=f$ reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an effective way of lowering the differential order of the problem to be studied. Suitable systems of operators may be treated analogously. For a class of decompositions the higher symmetries of a composition $P$ may be derived from generalised symmmetries of the component operators $P_i$ in the system.
For commuting linear operators $P_0,P_1,\dots ,P_\ell $ we describe a range of conditions which are weaker than invertibility. When any of these conditions hold we may study the composition $P=P_0P_1\cdots P_\ell $ in terms of the component operators or combinations thereof. In particular the general inhomogeneous problem $Pu=f$ reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an effective way of lowering the differential order of the problem to be studied. Suitable systems of operators may be treated analogously. For a class of decompositions the higher symmetries of a composition $P$ may be derived from generalised symmmetries of the component operators $P_i$ in the system.
Classification : 35A30, 53A30, 53A55, 53C25
Keywords: commuting linear operators; decompositions; relative invertibility
@article{ARM_2007_43_5_a4,
     author = {Gover, Rod A. and \v{S}ilhan, Josef},
     title = {Commuting linear operators and algebraic decompositions},
     journal = {Archivum mathematicum},
     pages = {373--387},
     year = {2007},
     volume = {43},
     number = {5},
     mrnumber = {2381783},
     zbl = {1199.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/}
}
TY  - JOUR
AU  - Gover, Rod A.
AU  - Šilhan, Josef
TI  - Commuting linear operators and algebraic decompositions
JO  - Archivum mathematicum
PY  - 2007
SP  - 373
EP  - 387
VL  - 43
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/
LA  - en
ID  - ARM_2007_43_5_a4
ER  - 
%0 Journal Article
%A Gover, Rod A.
%A Šilhan, Josef
%T Commuting linear operators and algebraic decompositions
%J Archivum mathematicum
%D 2007
%P 373-387
%V 43
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/
%G en
%F ARM_2007_43_5_a4
Gover, Rod A.; Šilhan, Josef. Commuting linear operators and algebraic decompositions. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 373-387. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/

[1] Boyer C. P., Kalnins E. G., Miller W., Jr.: Symmetry and separation of variables for the Helmholtz and Laplace equations. Nagoya Math. J. 60 (1976), 35–80. | MR | Zbl

[2] Cox D., Little J., O’Shea D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997, xiv+536 pp. | MR

[3] Eastwood M.: Higher symmetries of the Laplacian. Ann. of Math. 161 (2005), 1645–1665. | MR | Zbl

[4] Eastwood M., Leistner T.: Higher Symmetries of the Square of the Laplacian. preprint math.DG/0610610. | MR | Zbl

[5] Fefferman C., Graham C. R.: The ambient metric. arXiv:0710.0919.

[6] Gover A. R.: Laplacian operators and Q-curvature on conformally Einstein manifolds. Mathematische Annalen, 336 (2006), 311–334. | MR | Zbl

[7] Gover A. R., Šilhan J.: Commuting linear operators and decompositions; applications to Einstein manifolds. Preprint math/0701377 , www.arxiv.org. | MR | Zbl

[8] Graham C. R., Jenne R., Mason J. V., Sparling G. A.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. 46, (1992), 557–565. | MR | Zbl

[9] Miller W., Jr.: Symmetry and separation of variables. Encyclopedia of Mathematics and its Applications, Vol. 4. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977, xxx+285 pp. | MR | Zbl