Keywords: commuting linear operators; decompositions; relative invertibility
@article{ARM_2007_43_5_a4,
author = {Gover, Rod A. and \v{S}ilhan, Josef},
title = {Commuting linear operators and algebraic decompositions},
journal = {Archivum mathematicum},
pages = {373--387},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381783},
zbl = {1199.53020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/}
}
Gover, Rod A.; Šilhan, Josef. Commuting linear operators and algebraic decompositions. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 373-387. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a4/
[1] Boyer C. P., Kalnins E. G., Miller W., Jr.: Symmetry and separation of variables for the Helmholtz and Laplace equations. Nagoya Math. J. 60 (1976), 35–80. | MR | Zbl
[2] Cox D., Little J., O’Shea D.: Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997, xiv+536 pp. | MR
[3] Eastwood M.: Higher symmetries of the Laplacian. Ann. of Math. 161 (2005), 1645–1665. | MR | Zbl
[4] Eastwood M., Leistner T.: Higher Symmetries of the Square of the Laplacian. preprint math.DG/0610610. | MR | Zbl
[5] Fefferman C., Graham C. R.: The ambient metric. arXiv:0710.0919.
[6] Gover A. R.: Laplacian operators and Q-curvature on conformally Einstein manifolds. Mathematische Annalen, 336 (2006), 311–334. | MR | Zbl
[7] Gover A. R., Šilhan J.: Commuting linear operators and decompositions; applications to Einstein manifolds. Preprint math/0701377 , www.arxiv.org. | MR | Zbl
[8] Graham C. R., Jenne R., Mason J. V., Sparling G. A.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. 46, (1992), 557–565. | MR | Zbl
[9] Miller W., Jr.: Symmetry and separation of variables. Encyclopedia of Mathematics and its Applications, Vol. 4. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977, xxx+285 pp. | MR | Zbl