Keywords: deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization
@article{ARM_2007_43_5_a3,
author = {Doubek, M. and Markl, M. and Zima, P.},
title = {Deformation {Theory} {(Lecture} {Notes)}},
journal = {Archivum mathematicum},
pages = {333--371},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381782},
zbl = {1199.13015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/}
}
Doubek, M.; Markl, M.; Zima, P. Deformation Theory (Lecture Notes). Archivum mathematicum, Tome 43 (2007) no. 5, pp. 333-371. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/
[1] André M.: Method simpliciale en algèbre homologique et algébre commutative. Lecture Notes in Mathematics 32, Springer, Berlin, 1967. | MR
[2] Atiyah M. F., MacDonald I. G.: Introduction to Commutative Algebra. Addison-Wesley, 1969. Fifth printing. | MR | Zbl
[3] Balavoine D.: Deformation of algebras over a quadratic operad. In J. D. Stasheff J.-L. Loday and A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Mathematics (1997), 167–205. | MR
[4] Balavoine D.: Homology and cohomology with coefficients, of an algebra over a quadratic operad. J. Pure Appl. Algebra 132 91998), 221–258. | MR | Zbl
[5] Bayen F., Flato M., Fronsdal C., Lichnerowiscz A., Sternheimer D.: Deformation and quantization I,II. Ann. Physics 111 (1978), 61–151. | MR
[6] Ciocan-Fontanine I., Kapranov M. M.: Derived Quot schemes. Ann. Sci. Ecole Norm. Sup. 34(3), (2001), 403–440. | MR | Zbl
[7] Ciocan-Fontanine I., Kapranov M. M.: Derived Hilbert schemes. J. Amer. Math. Soc. 15 (4) (2002), 787–815. | MR | Zbl
[8] Félix Y.: Dénombrement des types de $\mml@font@bold k$-homotopie. Théorie de la déformation. Bulletin Soc. Math. France 108 (3), 1980.
[9] Fox T. F.: The construction of cofree coalgebras. J. Pure Appl. Algebra 84 (2) (1993), 191–198. | MR | Zbl
[10] Fox T. F.: An introduction to algebraic deformation theory. J. Pure Appl. Algebra 84 (1993), 17–41. | MR | Zbl
[11] Fox T. F., Markl M.: Distributive laws, bialgebras, and cohomology. In: J.-L. Loday, J. D. Stasheff, A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Math., Amer. Math. Soc. (1997), 167–205. | MR | Zbl
[12] Gerstenhaber M.: The cohomology structure of an associative ring. Ann. of Math. 78 (2) (1963), 267–288. | MR | Zbl
[13] Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. 79 (1), (1964), 59–104. | MR | Zbl
[14] Gerstenhaber M.: On the deformation of rings and algebras II. Ann. of Math. 88 (1966), 1–19. | MR | Zbl
[15] Getzler E.: Lie theory for nilpotent $L_\infty $ algebras. preprint math.AT/0404003, April 2004. | MR
[16] Hartshorne R.,. : Algebraic Geometry. volume 52 of Graduate Texts in Mathematics. Springer-Verlag, 1977. | MR | Zbl
[17] Hazewinkel M.: Cofree coalgebras and multivariable recursiveness. J. Pure Appl. Algebra 183 (1-3), (2003), 61–103. | MR | Zbl
[18] Hinich V.: Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15 (2003), 591–614. | MR | Zbl
[19] Hinich V., Schechtman V. V.: Homotopy Lie algebras. Adv. Soviet Math. 16 (2) (1993), 1–28. | MR | Zbl
[20] Kadeishvili T. V.: O kategorii differentialnych koalgebr i kategorii $A(\infty )$-algebr. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 77 (1985), 50–70. In Russian. | MR
[21] Kajiura H., Stasheff J.: Homotopy algebras inspired by clasical open-closed field string theory. Comm. Math. Phys. 263 (3) (2006), 553–581. | MR
[22] Kobayashi S., Nomizu K.: Foundations of Differential Geometry. volume I, Interscience Publishers, 1963. | MR | Zbl
[23] Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (3) (2003), 157–216. | MR | Zbl
[24] Kontsevich M., Soibelman Y.: Deformations of algebras over operads and the Deligne conjecture. In: Dito, G. et al., editor, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries, number 21 in Math. Phys. Stud., pages 255–307. Kluwer Academic Publishers, 2000. | MR
[25] Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (6) (1995), 2147–2161. | MR | Zbl
[26] Lada T., Stasheff J. D.: Introduction to sh Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. | MR | Zbl
[27] Mac Lane S.: Homology. Springer-Verlag, 1963.
[28] Mac Lane S.: Natural associativity and commutativity. Rice Univ. Stud. 49 (1) (1963), 28–46. | MR
[29] Mac Lane S.: Categories for the Working Mathematician. Springer-Verlag, 1971. | MR | Zbl
[30] Markl M.: A cohomology theory for $A(m)$-algebras and applications. J. Pure Appl. Algebra 83 (1992), 141–175. | MR | Zbl
[31] Markl M.: Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra 113 (2) (1996), 195–218. | MR
[32] Markl M.: Homotopy algebras are homotopy algebras. Forum Math. 16 (1) (2004), 129–160. | MR | Zbl
[33] Markl M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras. preprint math.AT/0411456, November 2004. | MR
[34] Markl M., Remm E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra 299 (2006), 171–189. | MR | Zbl
[35] Markl M., Shnider S., Stasheff J. D.: Operads in Algebra, Topology and Physics. volume 96 of Mathematical Surveys and Monographs, Amer. Math. Soc. Providence, Rhode Island, 2002. | MR | Zbl
[36] Nijenhuis A., Richardson J.: Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72 (1966), 1–29. | MR | Zbl
[37] Quillen D.: Homotopical Algebra. Lecture Notes in Math. 43, Springer-Verlag, 1967. | MR | Zbl
[38] Quillen D.: On the (co-)homology of commutative rings. Proc. Symp. Pure Math. 17 (1970), 65–87. | MR | Zbl
[39] Serre J.-P.: Lie Algebras and Lie Groups. Benjamin, 1965. Lectures given at Harward University. | MR | Zbl
[40] Smith J. R.: Cofree coalgebras over operads. Topology Appl. 133 (2) (2003), 105–138. | MR | Zbl
[41] Stasheff J. D.: Homotopy associativity of H-spaces I,II. Trans. Amer. Math. Soc. 108 (1963), 275–312. | MR | Zbl
[42] Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331. | MR | Zbl
[43] Tamarkin D. E.: Another proof of M. Kontsevich formality theorem. preprint math.QA/ 9803025, March 1998.