Deformation Theory (Lecture Notes)
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 333-371 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds.
First three sections of this overview paper cover classical topics of deformation theory of associative algebras and necessary background material. We then analyze algebraic structures of the Hochschild cohomology and describe the relation between deformations and solutions of the corresponding Maurer-Cartan equation. In Section  we generalize the Maurer-Cartan equation to strongly homotopy Lie algebras and prove the homotopy invariance of the moduli space of solutions of this equation. In the last section we indicate the main ideas of Kontsevich’s proof of the existence of deformation quantization of Poisson manifolds.
Classification : 13D10, 14D15, 46L65, 53D55
Keywords: deformation; Maurer-Cartan equation; strongly homotopy Lie algebra; deformation quantization
@article{ARM_2007_43_5_a3,
     author = {Doubek, M. and Markl, M. and Zima, P.},
     title = {Deformation {Theory} {(Lecture} {Notes)}},
     journal = {Archivum mathematicum},
     pages = {333--371},
     year = {2007},
     volume = {43},
     number = {5},
     mrnumber = {2381782},
     zbl = {1199.13015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/}
}
TY  - JOUR
AU  - Doubek, M.
AU  - Markl, M.
AU  - Zima, P.
TI  - Deformation Theory (Lecture Notes)
JO  - Archivum mathematicum
PY  - 2007
SP  - 333
EP  - 371
VL  - 43
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/
LA  - en
ID  - ARM_2007_43_5_a3
ER  - 
%0 Journal Article
%A Doubek, M.
%A Markl, M.
%A Zima, P.
%T Deformation Theory (Lecture Notes)
%J Archivum mathematicum
%D 2007
%P 333-371
%V 43
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/
%G en
%F ARM_2007_43_5_a3
Doubek, M.; Markl, M.; Zima, P. Deformation Theory (Lecture Notes). Archivum mathematicum, Tome 43 (2007) no. 5, pp. 333-371. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a3/

[1] André M.: Method simpliciale en algèbre homologique et algébre commutative. Lecture Notes in Mathematics 32, Springer, Berlin, 1967. | MR

[2] Atiyah M. F., MacDonald I. G.: Introduction to Commutative Algebra. Addison-Wesley, 1969. Fifth printing. | MR | Zbl

[3] Balavoine D.: Deformation of algebras over a quadratic operad. In J. D. Stasheff J.-L. Loday and A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Mathematics (1997), 167–205. | MR

[4] Balavoine D.: Homology and cohomology with coefficients, of an algebra over a quadratic operad. J. Pure Appl. Algebra 132 91998), 221–258. | MR | Zbl

[5] Bayen F., Flato M., Fronsdal C., Lichnerowiscz A., Sternheimer D.: Deformation and quantization I,II. Ann. Physics 111 (1978), 61–151. | MR

[6] Ciocan-Fontanine I., Kapranov M. M.: Derived Quot schemes. Ann. Sci. Ecole Norm. Sup. 34(3), (2001), 403–440. | MR | Zbl

[7] Ciocan-Fontanine I., Kapranov M. M.: Derived Hilbert schemes. J. Amer. Math. Soc. 15 (4) (2002), 787–815. | MR | Zbl

[8] Félix Y.: Dénombrement des types de $\mml@font@bold k$-homotopie. Théorie de la déformation. Bulletin Soc. Math. France 108 (3), 1980.

[9] Fox T. F.: The construction of cofree coalgebras. J. Pure Appl. Algebra 84 (2) (1993), 191–198. | MR | Zbl

[10] Fox T. F.: An introduction to algebraic deformation theory. J. Pure Appl. Algebra 84 (1993), 17–41. | MR | Zbl

[11] Fox T. F., Markl M.: Distributive laws, bialgebras, and cohomology. In: J.-L. Loday, J. D. Stasheff, A. A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of Contemporary Math., Amer. Math. Soc. (1997), 167–205. | MR | Zbl

[12] Gerstenhaber M.: The cohomology structure of an associative ring. Ann. of Math. 78 (2) (1963), 267–288. | MR | Zbl

[13] Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. 79 (1), (1964), 59–104. | MR | Zbl

[14] Gerstenhaber M.: On the deformation of rings and algebras II. Ann. of Math. 88 (1966), 1–19. | MR | Zbl

[15] Getzler E.: Lie theory for nilpotent $L_\infty $ algebras. preprint math.AT/0404003, April 2004. | MR

[16] Hartshorne R.,. : Algebraic Geometry. volume 52 of Graduate Texts in Mathematics. Springer-Verlag, 1977. | MR | Zbl

[17] Hazewinkel M.: Cofree coalgebras and multivariable recursiveness. J. Pure Appl. Algebra 183 (1-3), (2003), 61–103. | MR | Zbl

[18] Hinich V.: Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15 (2003), 591–614. | MR | Zbl

[19] Hinich V., Schechtman V. V.: Homotopy Lie algebras. Adv. Soviet Math. 16 (2) (1993), 1–28. | MR | Zbl

[20] Kadeishvili T. V.: O kategorii differentialnych koalgebr i kategorii $A(\infty )$-algebr. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 77 (1985), 50–70. In Russian. | MR

[21] Kajiura H., Stasheff J.: Homotopy algebras inspired by clasical open-closed field string theory. Comm. Math. Phys. 263 (3) (2006), 553–581. | MR

[22] Kobayashi S., Nomizu K.: Foundations of Differential Geometry. volume I, Interscience Publishers, 1963. | MR | Zbl

[23] Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66 (3) (2003), 157–216. | MR | Zbl

[24] Kontsevich M., Soibelman Y.: Deformations of algebras over operads and the Deligne conjecture. In: Dito, G. et al., editor, Conférence Moshé Flato 1999: Quantization, deformation, and symmetries, number 21 in Math. Phys. Stud., pages 255–307. Kluwer Academic Publishers, 2000. | MR

[25] Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23 (6) (1995), 2147–2161. | MR | Zbl

[26] Lada T., Stasheff J. D.: Introduction to sh Lie algebras for physicists. Internat. J. Theoret. Phys. 32 (7) (1993), 1087–1103. | MR | Zbl

[27] Mac Lane S.: Homology. Springer-Verlag, 1963.

[28] Mac Lane S.: Natural associativity and commutativity. Rice Univ. Stud. 49 (1) (1963), 28–46. | MR

[29] Mac Lane S.: Categories for the Working Mathematician. Springer-Verlag, 1971. | MR | Zbl

[30] Markl M.: A cohomology theory for $A(m)$-algebras and applications. J. Pure Appl. Algebra 83 (1992), 141–175. | MR | Zbl

[31] Markl M.: Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra 113 (2) (1996), 195–218. | MR

[32] Markl M.: Homotopy algebras are homotopy algebras. Forum Math. 16 (1) (2004), 129–160. | MR | Zbl

[33] Markl M.: Intrinsic brackets and the ${L_\infty }$-deformation theory of bialgebras. preprint math.AT/0411456, November 2004. | MR

[34] Markl M., Remm E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra 299 (2006), 171–189. | MR | Zbl

[35] Markl M., Shnider S., Stasheff J. D.: Operads in Algebra, Topology and Physics. volume 96 of Mathematical Surveys and Monographs, Amer. Math. Soc. Providence, Rhode Island, 2002. | MR | Zbl

[36] Nijenhuis A., Richardson J.: Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72 (1966), 1–29. | MR | Zbl

[37] Quillen D.: Homotopical Algebra. Lecture Notes in Math. 43, Springer-Verlag, 1967. | MR | Zbl

[38] Quillen D.: On the (co-)homology of commutative rings. Proc. Symp. Pure Math. 17 (1970), 65–87. | MR | Zbl

[39] Serre J.-P.: Lie Algebras and Lie Groups. Benjamin, 1965. Lectures given at Harward University. | MR | Zbl

[40] Smith J. R.: Cofree coalgebras over operads. Topology Appl. 133 (2) (2003), 105–138. | MR | Zbl

[41] Stasheff J. D.: Homotopy associativity of H-spaces I,II. Trans. Amer. Math. Soc. 108 (1963), 275–312. | MR | Zbl

[42] Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331. | MR | Zbl

[43] Tamarkin D. E.: Another proof of M. Kontsevich formality theorem. preprint math.QA/ 9803025, March 1998.