Keywords: contractions; Lie algebras; affine algebraic groups; affine group schemes
@article{ARM_2007_43_5_a2,
author = {Burde, Dietrich},
title = {Contractions of {Lie} algebras and algebraic groups},
journal = {Archivum mathematicum},
pages = {321--332},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381781},
zbl = {1199.14016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a2/}
}
Burde, Dietrich. Contractions of Lie algebras and algebraic groups. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 321-332. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a2/
[1] Agaoka Y.: An algorithm to determine the isomorphism classes of 4-dimensional complex Lie algebras. Linear Algebra Appl. 345 (2002), 85–118. | MR | Zbl
[2] Borel A.: Lienar Algebraic Groups. Graduate Texts in Mathematics, 126, Springer-Verlag, New York (1991), 1–288. | MR
[3] Burde D.: Degenerations of nilpotent Lie algebras. J. Lie Theory 9 (1999), 193–202. | MR | Zbl
[4] Burde D., Steinhoff C.: Classification of orbit closures of $4$–dimensional complex Lie algebras. J. Algebra 214 (1999), 729–739. | MR | Zbl
[5] Burde D.: Degenerations of $7$-dimensional nilpotent Lie Algebras. Commun. Algebra 33, No. 4 (2005), 1259–1277. | MR | Zbl
[6] Carles R., Diakité Y.: Sur les variétés d’algèbres de Lie de dimension $\le 7$. J. Algebra 91 (1984), 53–63. | MR | Zbl
[7] Daboul C.: Deformationen und Degenerationen von Lie Algebren und Lie Gruppen. Dissertation (1999), Universität Hamburg.
[8] Gerstenhaber M., Schack S. D.: Relative Hochschild cohomology, rigid Lie algebras and the Bockstein. J. Pure Appl. Algebra 43, No. 1 (1986), 53–74. | MR
[9] Grunewald F., O’Halloran J.: A characterization of orbit closure and applications. J. Algebra 116 (1988), 163–175. | MR | Zbl
[10] Hartshorne R.: Algebraic Geometry. Graduate Texts in Mathematics, 52 (1977). | MR | Zbl
[11] Inönü E., Wigner E. P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sciences USA 39 (1953), 510–524. | MR | Zbl
[12] Lauret J.: Degenerations of Lie algebras and Geometry of Lie groups. Differ. Geom. Appl. 18, No. 2 (2003), 177–194. | MR
[13] Nesterenko M., Popovych R.: Contractions of low-dimensional Lie algebras. J. Math. Phys. 47 (2006), no. 12, 123515, 45 pp. arXiv:math-ph/0608018 (2006). | MR | Zbl
[14] Segal I. E.: A class of operator algebras determined by groups. Duke Math. J. 18 (1951), 221–265. | MR