Proportionality principle for cusped manifolds
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 485-490
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give a short proof of the proportionality principle for cusped hyperbolic manifolds.
We give a short proof of the proportionality principle for cusped hyperbolic manifolds.
@article{ARM_2007_43_5_a11,
author = {Kuessner, Thilo},
title = {Proportionality principle for cusped manifolds},
journal = {Archivum mathematicum},
pages = {485--490},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381790},
zbl = {1199.57012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a11/}
}
Kuessner, Thilo. Proportionality principle for cusped manifolds. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 485-490. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a11/
[1] Benedetti R., Petronio C.: Lectures on Hyperbolic Geometry. Universitext, Springer-Verlag, Berlin (1992). | MR | Zbl
[2] Francaviglia S.: Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. IMRN 9 (2004), 425–459. | MR | Zbl
[3] Gromov M.: Volume and bounded cohomology. Public. Math. IHES 56 (1982), 5–100. | MR | Zbl
[4] Löh C.: Measure homology and singular homology are isometrically isomorphic. Math. Z. 253 (2006), 197–218. | MR | Zbl
[5] Ratcliffe J.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, Springer-Verlag, Berlin (1994). | MR | Zbl
[6] W. Thurston: The Geometry and Topology of 3-Manifolds. Lecture Notes, Princeton.