Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 467-484 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.
Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.
Classification : 35N10, 53D05, 58J05, 58J50, 58Jxx
Keywords: symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors
@article{ARM_2007_43_5_a10,
     author = {Kr\'ysl, Svatopluk},
     title = {Relation of the spectra of symplectic {Rarita-Schwinger} and {Dirac} operators on flat symplectic manifolds},
     journal = {Archivum mathematicum},
     pages = {467--484},
     year = {2007},
     volume = {43},
     number = {5},
     mrnumber = {2381789},
     zbl = {1199.58011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a10/}
}
TY  - JOUR
AU  - Krýsl, Svatopluk
TI  - Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
JO  - Archivum mathematicum
PY  - 2007
SP  - 467
EP  - 484
VL  - 43
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a10/
LA  - en
ID  - ARM_2007_43_5_a10
ER  - 
%0 Journal Article
%A Krýsl, Svatopluk
%T Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
%J Archivum mathematicum
%D 2007
%P 467-484
%V 43
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a10/
%G en
%F ARM_2007_43_5_a10
Krýsl, Svatopluk. Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 467-484. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a10/

[1] Baldoni W.: General represenation theory of real reductive Lie groups. In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. | MR

[2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application. Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. | MR

[3] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring. Phys. Lett. B, 225 (1989), 57–65. | MR

[4] Howe R.: $\theta $-correspondence and invariance theory. Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. | MR

[5] Habermann K.: The Dirac operator on symplectic spinors. Ann. Global Anal. Geom. 13 (1995), 155–168. | MR | Zbl

[6] Habermann K., Habermann L.: Introduction to symplectic Dirac operators. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. | MR | Zbl

[7] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry. Ph.D. thesis, Charles University of Prague, Prague, 2001.

[8] Kashiwara M., Schmid W.: Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups. In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. | MR

[9] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials. Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. | MR

[10] Kostant B.: Symplectic Spinors. Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. | MR | Zbl

[11] Krýsl S.: Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$. J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. | MR

[12] Krýsl S.: Symplectic spinor valued forms and operators acting between them. Arch. Math.(Brno) 42 (2006), 279–290. | MR

[13] Krýsl S.: Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries. to appear in J. Differential Geom. Appl. | MR

[14] Reuter M.: Symplectic Dirac-Kähler Fields. J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. | MR | Zbl

[15] Rudnick S.: Symplektische Dirac-Operatoren auf symmetrischen Räumen. Diploma Thesis, University of Greifswald, Greifswald, 2005.

[16] Schmid W.: Boundary value problems for group invariant differential equations. Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. | MR | Zbl

[17] Severa V.: Invariant differential operators on spinor-valued differential forms. Ph.D. thesis, Charles University of Prague, Prague, 1998.

[18] Sommen F., Souček V.: Monogenic differential forms. Complex Variables Theory Appl. 19 (1992), 81–90. | MR | Zbl

[19] Tirao J., Vogan D. A., Wolf J. A.: Geometry and Representation Theory of Real and $p$-Adic Groups. Birkhäuser, 1997. | MR

[20] Vogan D.: Unitary representations and complex analysis. electronically available at http://www-math.mit.edu/$\sim $dav/venice.pdf. | Zbl

[21] Weil A.: Sur certains groups d’opérateurs unitaires. Acta Math. 111 (1964), 143–211. | MR

[22] Woodhouse N. M. J.: Geometric quantization. 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. | MR | Zbl