Keywords: Riemannian manifold; naturally reductive Riemannian homogeneous space; D’Atri space; flag manifold
@article{ARM_2007_43_5_a1,
author = {Arias-Marco, Teresa},
title = {A property of {Wallach's} flag manifolds},
journal = {Archivum mathematicum},
pages = {307--319},
year = {2007},
volume = {43},
number = {5},
mrnumber = {2381780},
zbl = {1199.53092},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a1/}
}
Arias-Marco, Teresa. A property of Wallach's flag manifolds. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 307-319. http://geodesic.mathdoc.fr/item/ARM_2007_43_5_a1/
[1] Arias-Marco T.: The classification of 4-dimensional homogeneous D’Atri spaces revisited. Differential Geometry and its Applications 25 (2007), 29–34. | MR | Zbl
[2] Arias-Marco T., Kowalski O.: The classification of 4-dimensional homogeneous D’Atri spaces. to appear in Czechoslovak Math. J. | MR
[3] Arias-Marco T., Naveira A. M.: A note on a family of reductive Riemannian homogeneous spaces whose geodesic symmetries fail to be divergence-preserving. Proceedings of the XI Fall Workshop on Geometry and Physics. Publicaciones de la RSME 6 (2004), 35–45. | Zbl
[4] Bueken P., Vanhecke L.: Three- and Four-dimensional Einstein-like manifolds and homogeneity. Geom. Dedicata 75 (1999), 123–136. | MR | Zbl
[5] D’Atri J. E.: Geodesic spheres and symmetries in naturally reductive homogeneous spaces. Michigan Math. J. 22 (1975), 71–76. | MR
[6] D’Atri J. E., Nickerson H. K.: Divergence preserving geodesic symmetries. J. Differential Geom. 3 (1969), 467–476. | MR | Zbl
[7] D’Atri J. E., Nickerson H. K.: Geodesic symmetries in spaces with special curvature tensors. J. Differenatial Geom. 9 (1974), 251–262. | MR | Zbl
[8] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(4) (1980), 35–58. | MR | Zbl
[9] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vols. I and II. Interscience, New York, 1963 and 1969. | MR
[10] Kowalski O.: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale, (1983), 131–158. | MR | Zbl
[11] Kowalski O., Prüfer F., Vanhecke L.: D’Atri Spaces. Progr. Nonlinear Differential Equations Appl. 20 (1996), 241–284. | MR | Zbl
[12] Podestà F., Spiro A.: Four-dimensional Einstein-like manifolds and curvature homogeneity. Geom. Dedicata 54 (1995), 225–243. | MR | Zbl
[13] Szabó Z. I.: Spectral theory for operator families on Riemannian manifolds. Proc. Sympos. Pure Math. 54(3) (1993), 615–665. | MR
[14] Wallach N. R.: Compact homogeneous Riemannian manifols with strictly positive curvature. Ann. of Math. 96 (1972), 276–293. | MR
[15] Wolf J., Gray A.: Homogeneous spaces defined by Lie group automorphisms, I. J. Differential Geom. 2 (1968), 77–114, 115–159. | MR | Zbl
Wolf J., Gray A.: Homogeneous spaces defined by Lie group automorphisms, II. J. Differential Geom. 2 (1968), 115–159. | MR | Zbl