On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories
Archivum mathematicum, Tome 43 (2007) no. 4, pp. 289-303 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
This paper is concerned with the asymptotic behaviour of a class of doubly nonlinear parabolic systems. In particular, we prove the existence of the global attractor which has, in one and two space dimensions, finite fractal dimension.
Classification : 35B40, 35B41, 35K50, 35K55, 35K57, 35K65, 37L30
Keywords: doubly nonlinear parabolic systems; existence of solutions; global and exponential attractor; fractal dimension and l-trajectories
@article{ARM_2007_43_4_a6,
     author = {El Ouardi, Hamid},
     title = {On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories},
     journal = {Archivum mathematicum},
     pages = {289--303},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2378529},
     zbl = {1164.35045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a6/}
}
TY  - JOUR
AU  - El Ouardi, Hamid
TI  - On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories
JO  - Archivum mathematicum
PY  - 2007
SP  - 289
EP  - 303
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a6/
LA  - en
ID  - ARM_2007_43_4_a6
ER  - 
%0 Journal Article
%A El Ouardi, Hamid
%T On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories
%J Archivum mathematicum
%D 2007
%P 289-303
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a6/
%G en
%F ARM_2007_43_4_a6
El Ouardi, Hamid. On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories. Archivum mathematicum, Tome 43 (2007) no. 4, pp. 289-303. http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a6/

[1] Alt H. W., Luckhaus S.: Quasilinear elliptic and parabolic differential equations. Math. Z. 183 (1983), 311–341. | MR

[2] Bamberger A.: Etude d’une équation doublement non linéaire. J. Funct. Anal. 24 (1977), 148–155. | MR | Zbl

[3] Blanchard D., Francfort G.: Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term. Siam. J. Anal. Math. 9 (5), (1988), 1032–1056. | MR

[4] Diaz J., de Thelin F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. Siam. J. Anal. Math. 25 (4), (1994), 1085–1111. | MR | Zbl

[5] Diaz J., Padial J. F.: Uniqueness and existence of solutions in the BV$_{t}(Q)$ space to a doubly nonlinear parabolic problem. Publ. Mat. 40 (1996), 527–560. | MR

[6] Eden A., Michaux B., Rakotoson J. M.: Doubly nonlinear parabolic type equations as dynamical systems. J. Dynam. Differential Equations 3 (1), (1991), 87–131. | MR | Zbl

[7] Eden A., Michaux B., Rakotoson J. M.: Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis. Indiana Univ. Math. J. 39 (3), (1990), 737–783. | MR | Zbl

[8] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $\ u_{t}-\triangle _{p}u=f(x,u)$, Part I. Nonlinear Anal., Theory Methods Appl. 12 (12), (1988), 1385–1398. | MR

[9] El Hachimi A., de Thelin F.: Supersolutions and stabilisation of the solutions of the equation $u_{t}-\triangle _{p}u=f(x,u)$, Part II. Publ. Mat. 35 (1991), 347–362. | MR

[10] El Ouardi H., de Thelin F.: Supersolutions and stabilization of the solutions of a nonlinear parabolic system. Publ. Mat. 33 (1989), 369–381. | MR

[11] El Ouardi H., El Hachimi A.: Existence and attractors of solutions for nonlinear parabolic systems. Electron. J. Qual. Theory Differ. Equ. 5 (2001), 1–16. | MR

[12] El Ouardi H., El Hachimi A.: Existence and regularity of a global attractor for doubly nonlinear parabolic equations. Electron. J. Differ. Equ. (45) (2002), 1–15. | MR | Zbl

[13] El Ouardi H., El Hachimi A.: Attractors for a class of doubly nonlinear parabolic systems. Electron. J. Qual. Theory Differ. Equ. (1) (2006), 1–15. | MR | Zbl

[14] Dung L.: Ultimate boundedness of solutions and gradients of a class of degenerate parabolic systems. Nonlinear Anal., Theory Methods Appl. 39 (2000), 157–171. | MR

[15] Dung L.: Global attractors and steady states for a class of reaction diffusion systems. J. Differential Equations 147 (1998), 1–29. | MR

[16] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris 1969. | MR | Zbl

[17] Langlais M., Phillips D.: Stabilization of solution of nonlinear and degenerate evolution equatins. Nonlinear Anal., Theory Methods Appl. 9 (1985), 321–333. | MR

[18] Ladyzhznskaya O., Solonnikov V. A., Outraltseva N. N.: Linear and quasilinear equations of parabolic type. Trans. Amer. Math. Soc. XI, 1968.

[19] Marion M.: Attractors for reaction-diffusion equation: existence and estimate of their dimension. Appl. Anal. 25 (1987), 101–147. | MR

[20] Málek J., Pražák D.: Long time behaviour via the method of l-trajectories. J. Differential Equations 18 (2), (2002), 243–279.

[21] Miranville A.: Finite dimensional global attractor for a class of doubly nonlinear parabolic equations. Central European J. Math. 4 (1), (2006), 163–182. | MR | Zbl

[22] Foias C., Constantin P., Temam R.: Attractors representing turbulent flows. Mem. Am. Math. Soc. 314 (1985), 67p. | MR | Zbl

[23] Foias C., Temam R.: Structure of the set of stationary solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 30 (1977), 149–164. | MR | Zbl

[24] Simon J.: Régularité de la solution d’un problème aux limites non linéaire. Ann. Fac. Sci. Toulouse Math. (6),(1981), 247–274. | MR

[25] Schatzman M.: Stationary solutions and asymptotic behavior of a quasilinear parabolic equation. Indiana Univ. Math. J. 33 (1984), 1–29. | MR

[26] Raviart P. A.: Sur la résolution de certaines équations paraboliques non linéaires. J. Funct. Anal. 5 (1970), 299–328. | MR | Zbl

[27] Temam R.: Infinite dimensional dynamical systems in mechanics and physics. Appl. Math. Sci. 68, Springer-Verlag 1988. | MR | Zbl

[28] Tsutsumi M.: On solutions of some doubly nonlinear degenerate parabolic systems with absorption. J. Math. Anal. Appl. 132 (1988), 187–212. | MR