Higher order linear connections from first order ones
Archivum mathematicum, Tome 43 (2007) no. 4, pp. 285-288
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We describe how find all $\mathcal Mf_m$-natural operators $D$ transforming torsion free classical linear connections $\nabla $ on $m$-manifolds $M$ into $r$-th order linear connections $D(\nabla )$ on $M$.
We describe how find all $\mathcal Mf_m$-natural operators $D$ transforming torsion free classical linear connections $\nabla $ on $m$-manifolds $M$ into $r$-th order linear connections $D(\nabla )$ on $M$.
Classification :
53Cxx, 58A20, 58Axx
Keywords: higher order linear connection; natural operator
Keywords: higher order linear connection; natural operator
@article{ARM_2007_43_4_a5,
author = {Mikulski, W. M.},
title = {Higher order linear connections from first order ones},
journal = {Archivum mathematicum},
pages = {285--288},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2378528},
zbl = {1164.58001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a5/}
}
Mikulski, W. M. Higher order linear connections from first order ones. Archivum mathematicum, Tome 43 (2007) no. 4, pp. 285-288. http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a5/
[1] Kolář I.: Torsion-free connections on higher order frame bundles. in New Development in Differential Geometry, Proceedings (Conference in Debrecen), Kluwer 1996, 233–241. | MR
[2] Kolář I.: On the torsion-free connections on higher order frame bundles. Publ. Math. Debrecen 67 (3-4), (2005), 373–379. | MR | Zbl
[3] Kolář I., Michor P. W., Slovák J.: Natural Operations In Differential Geometry. Springer-Verlag Berlin 1993. | MR | Zbl
[4] Paluszny M., Zajtz A.: Foundations of differential geometry of natural bundles. Lecture Notes Univ. Caracas, 1984.