Keywords: ordered Banach space; hybrid fixed point theorem; neutral functional differential inclusion and existence theorem
@article{ARM_2007_43_4_a4,
author = {Dhage, B. C.},
title = {Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions},
journal = {Archivum mathematicum},
pages = {265--284},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2378527},
zbl = {1164.47056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/}
}
TY - JOUR AU - Dhage, B. C. TI - Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions JO - Archivum mathematicum PY - 2007 SP - 265 EP - 284 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/ LA - en ID - ARM_2007_43_4_a4 ER -
Dhage, B. C. Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions. Archivum mathematicum, Tome 43 (2007) no. 4, pp. 265-284. http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/
[1] Agarwal R. P., Dhage B. C., O’Regan D.: The method of upper and lower solution for differential inclusions via a lattice fixed point theorem. Dynamic Systems Appl. 12 (2003), 1–7. | MR
[2] Akhmerov P. P., Kamenskii M. I., Potapov A. S., Sadovskii B. N.: Measures of Noncompactness and Condensing Operators. Birkhäuser 1992. | MR
[3] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, 2003. | MR
[4] Banas J., Lecko M.: Fixed points of the product of operators in Banach algebras. PanAmer. Math. J. 12 (2002), 101–109. | MR
[5] Covitz H., Nadler S. B., Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | MR
[6] Deimling K.: Multi-valued Differential Equations. De Gruyter, Berlin 1998.
[7] Dhage B. C.: Multi-valued operators and fixed point theorems in Banach algebras I. Taiwanese J. Math. 10 (4), (2006), 1025–1045. | MR | Zbl
[8] Dhage B. C.: Multi-valued mappings and fixed points I. Nonlinear Funct. Anal. Appl. 10 (3), (2005), 359–378. | MR | Zbl
[9] Dhage B. C.: Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications. Comput. Math. Appl. 53 (2007), 803–824. | MR | Zbl
[10] Dhage B. C.: A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I. Nonlinear Anal. Forum 10 (2005), 105–126. | MR
[11] Dhage B. C.: A general multi-valued hybrid fixed point theorem and perturbed differential inclusions. Nonlinear Anal. 64 (2006), 2747–2772. | MR | Zbl
[12] Dhage B. C.: Some algebraic fixed point theorems for multi-valued operators with applications. DISC. Math. Differential inclusions, Control & Optimization 26 (2006), 5–55. | MR
[13] Dhage B. C., Ntouyas S. K.: Existence results for neutral functional differential inclusions. Fixed Point Theory 5 (2005), 235–248. | MR | Zbl
[14] Dajun Guo, Lakshmikanthm V.: Nonlinear Problems in Abstract Cones. Academic Press, New York–London, 1988.
[15] Hale J. K.: Theory of Functional Differential Equations. Springer, New York 1977. | MR | Zbl
[16] Heikkilä S., Lakshmikantham V.: Monotone Iterative Technique for Nonlinear Discontinues Differential Equations. Marcel Dekker Inc., New York, 1994. | MR
[17] Heikkilä S., Hu S.: On fixed points of multi-functions in ordered spaces. Appl. Anal. 53 (1993), 115–127.
[18] Hu S., Papageorgiou N. S.,: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer Academic Publishers, Dordrechet–Boston–London 1997. | MR
[19] Lasota A., Opial Z.: An application of the Kakutani- Ky Fan theorem in the theory of ordinary differential equations. Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl
[20] Ntouyas S. K.: Initial and boundary value problems for functional differential equations via topological transversality method : A Survey. Bull. Greek Math. Soc. 40 (1998), 3–41. | MR
[21] Petruşel A.: Operatorial Inclusions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl
[22] Zeidler E.: Nonlinear Functional Analysis and Its Applications: Part I. Springer Verlag, 1985. | MR