Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions
Archivum mathematicum, Tome 43 (2007) no. 4, pp. 265-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they are further applied to the neutral functional nonconvex differential inclusions involving discontinuous multi-functions for proving the existence results under mixed Lipschitz, compactness and right monotonicity conditions. Our results improve the multi-valued hybrid fixed point theorems of Dhage (Dhage, B. C., A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I, Nonlinear Anal. Forum 10 (2005), 105–126.) under weaker convexity conditions.
In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they are further applied to the neutral functional nonconvex differential inclusions involving discontinuous multi-functions for proving the existence results under mixed Lipschitz, compactness and right monotonicity conditions. Our results improve the multi-valued hybrid fixed point theorems of Dhage (Dhage, B. C., A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I, Nonlinear Anal. Forum 10 (2005), 105–126.) under weaker convexity conditions.
Classification : 34A60, 34K40, 47A25, 47H10, 47N20
Keywords: ordered Banach space; hybrid fixed point theorem; neutral functional differential inclusion and existence theorem
@article{ARM_2007_43_4_a4,
     author = {Dhage, B. C.},
     title = {Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions},
     journal = {Archivum mathematicum},
     pages = {265--284},
     year = {2007},
     volume = {43},
     number = {4},
     mrnumber = {2378527},
     zbl = {1164.47056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/}
}
TY  - JOUR
AU  - Dhage, B. C.
TI  - Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions
JO  - Archivum mathematicum
PY  - 2007
SP  - 265
EP  - 284
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/
LA  - en
ID  - ARM_2007_43_4_a4
ER  - 
%0 Journal Article
%A Dhage, B. C.
%T Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions
%J Archivum mathematicum
%D 2007
%P 265-284
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/
%G en
%F ARM_2007_43_4_a4
Dhage, B. C. Hybrid fixed point theory for right monotone increasing multi-valued mappings and neutral functional differential inclusions. Archivum mathematicum, Tome 43 (2007) no. 4, pp. 265-284. http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a4/

[1] Agarwal R. P., Dhage B. C., O’Regan D.: The method of upper and lower solution for differential inclusions via a lattice fixed point theorem. Dynamic Systems Appl. 12 (2003), 1–7. | MR

[2] Akhmerov P. P., Kamenskii M. I., Potapov A. S., Sadovskii B. N.: Measures of Noncompactness and Condensing Operators. Birkhäuser 1992. | MR

[3] Andres J., Górniewicz L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, 2003. | MR

[4] Banas J., Lecko M.: Fixed points of the product of operators in Banach algebras. PanAmer. Math. J. 12 (2002), 101–109. | MR

[5] Covitz H., Nadler S. B., Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | MR

[6] Deimling K.: Multi-valued Differential Equations. De Gruyter, Berlin 1998.

[7] Dhage B. C.: Multi-valued operators and fixed point theorems in Banach algebras I. Taiwanese J. Math. 10 (4), (2006), 1025–1045. | MR | Zbl

[8] Dhage B. C.: Multi-valued mappings and fixed points I. Nonlinear Funct. Anal. Appl. 10 (3), (2005), 359–378. | MR | Zbl

[9] Dhage B. C.: Hybrid fixed point theory for strictly monotone increasing multi-valued mappings with applications. Comput. Math. Appl. 53 (2007), 803–824. | MR | Zbl

[10] Dhage B. C.: A fixed point theorem for multivalued mappings on ordered Banach spaces with applications I. Nonlinear Anal. Forum 10 (2005), 105–126. | MR

[11] Dhage B. C.: A general multi-valued hybrid fixed point theorem and perturbed differential inclusions. Nonlinear Anal. 64 (2006), 2747–2772. | MR | Zbl

[12] Dhage B. C.: Some algebraic fixed point theorems for multi-valued operators with applications. DISC. Math. Differential inclusions, Control & Optimization 26 (2006), 5–55. | MR

[13] Dhage B. C., Ntouyas S. K.: Existence results for neutral functional differential inclusions. Fixed Point Theory 5 (2005), 235–248. | MR | Zbl

[14] Dajun Guo, Lakshmikanthm V.: Nonlinear Problems in Abstract Cones. Academic Press, New York–London, 1988.

[15] Hale J. K.: Theory of Functional Differential Equations. Springer, New York 1977. | MR | Zbl

[16] Heikkilä S., Lakshmikantham V.: Monotone Iterative Technique for Nonlinear Discontinues Differential Equations. Marcel Dekker Inc., New York, 1994. | MR

[17] Heikkilä S., Hu S.: On fixed points of multi-functions in ordered spaces. Appl. Anal. 53 (1993), 115–127.

[18] Hu S., Papageorgiou N. S.,: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer Academic Publishers, Dordrechet–Boston–London 1997. | MR

[19] Lasota A., Opial Z.: An application of the Kakutani- Ky Fan theorem in the theory of ordinary differential equations. Bull. Polish Acad. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl

[20] Ntouyas S. K.: Initial and boundary value problems for functional differential equations via topological transversality method : A Survey. Bull. Greek Math. Soc. 40 (1998), 3–41. | MR

[21] Petruşel A.: Operatorial Inclusions. House of the Book of Science, Cluj-Napoca, 2002. | MR | Zbl

[22] Zeidler E.: Nonlinear Functional Analysis and Its Applications: Part I. Springer Verlag, 1985. | MR