Keywords: $Q$-rings; almost $Q$-rings; the rings $R(x)$ and $R\langle x\rangle $
@article{ARM_2007_43_4_a0,
author = {Khashan, H. A. and Al-Ezeh, H.},
title = {Conditions under which $R(x)$ and $R\langle x\rangle$ are almost {Q-rings}},
journal = {Archivum mathematicum},
pages = {231--236},
year = {2007},
volume = {43},
number = {4},
mrnumber = {2378523},
zbl = {1155.13301},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a0/}
}
Khashan, H. A.; Al-Ezeh, H. Conditions under which $R(x)$ and $R\langle x\rangle$ are almost Q-rings. Archivum mathematicum, Tome 43 (2007) no. 4, pp. 231-236. http://geodesic.mathdoc.fr/item/ARM_2007_43_4_a0/
[1] Anderson D. D., Mahaney L. A.: Commutative rings in which every ideal is a product of primary ideals. J. Algebra 106 (1987), 528–535. | MR | Zbl
[2] Anderson D. D., Anderson D. F., Markanda R.: The rings $R(x)$ and $R\left\langle x\right\rangle$. J. Algebra 95 (1985), 96–115. | MR
[3] Heinzer W., David L.: The Laskerian property in commutative rings. J. Algebra 72 (1981), 101–114. | MR | Zbl
[4] Huckaba J. A.: Commutative rings with zero divisors. Marcel Dekker, INC. New York and Basel, 1988. | MR | Zbl
[5] Jayaram C.: Almost Q-rings. Arch. Math. (Brno) 40 (2004), 249–257. | MR | Zbl
[6] Kaplansky I.: Commutative Rings. Allyn and Bacon, Boston 1970. | MR | Zbl
[7] Larsen M., McCarthy P.: Multiplicative theory of ideals. Academic Press, New York and London 1971. | MR | Zbl
[8] Ohm J., Pendleton R. L.: Rings with Noetherian spectrum. Duke Math. J. 35 (1968), 631–640. | MR | Zbl