Keywords: classical mechanics; rigid system; Newton’s law; Riemannian geometry
@article{ARM_2007_43_3_a5,
author = {Modugno, Marco and Vitolo, Raffaele},
title = {The geometry of {Newton's} law and rigid systems},
journal = {Archivum mathematicum},
pages = {197--229},
year = {2007},
volume = {43},
number = {3},
mrnumber = {2354808},
zbl = {1164.70014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a5/}
}
Modugno, Marco; Vitolo, Raffaele. The geometry of Newton's law and rigid systems. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 197-229. http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a5/
[1] Abraham R., Marsden J.: Foundations of Mechanics. Benjamin, New York, 1986.
[2] Arnol’d V. I.: Mathematical methods of classical mechanics. MIR, Moscow 1975; GTM n. 70, Springer. | MR
[3] Cortizo S. F.: Classical mechanics–on the deduction of Lagrange’s equations. Rep. Math. Phys. 29, No. 1 (1991), 45–54. | MR | Zbl
[4] Crampin M.: Jet bundle techniques in analytical mechanics. Quaderni del CNR, GNFM, Firenze, 1995.
[5] Curtis W. D., Miller F. R.: Differentiable manifolds and theoretical physics. Academic Press, New York, 1985. | MR
[6] de Leon M., Rodriguez P. R.: Methods of differential geometry in analytical mechanics. North Holland, Amsterdam, 1989. | MR
[7] Gallot S., Hulin D., Lafontaine J.: Riemannian Geometry. II ed., Springer Verlag, Berlin, 1990. | MR | Zbl
[8] Godbillon C.: Geometrie differentielle et mechanique analytique. Hermann, Paris, 1969. | MR | Zbl
[9] Goldstein H.: Classical Mechanics. II ed., Addison–Wesley, London, 1980. | MR | Zbl
[10] Guillemin V., Sternberg S.: Symplectic techniques in physics. Cambridge Univ. Press, 1984. | MR | Zbl
[11] Janyška J., Modugno M., Vitolo R.: Semi–vector spaces. preprint 2005.
[12] Landau L., Lifchits E.: Mechanics. MIR, Moscow 1975.
[13] Levi–Civita T., Amaldi U.: Lezioni di Meccanica Razionale. vol. II, II ed., Zanichelli, Bologna, 1926.
[14] Libermann P. Marle C.-M.: Symplectic geometry and analytical mechanics. Reidel, Dordrecht, 1987. | MR
[15] Lichnerowicz A.: Elements of tensor calculus. John Wiley & Sons, New York, 1962. | MR | Zbl
[16] Littlejohn R. G., Reinsch M.: Gauge fields in the separation of rotations and internal motions in the $n$–body problem. Rev. Modern Phys. 69, 1 (1997), 213–275. | MR
[17] Marsden J. E., Ratiu T.: Introduction to Mechanics and Symmetry. Texts Appl. Math. 17, Springer, New York, 1995. | MR
[18] Massa E., Pagani E.: Classical dynamics of non–holonomic systems: a geometric approach. Ann. Inst. H. Poincaré 55, 1 (1991), 511–544. | MR | Zbl
[19] Massa E., Pagani E.: Jet bundle geometry, dynamical connections and the inverse problem of Lagrangian mechanics. Ann. Inst. H. Poincaré (1993).
[20] Modugno M., Tejero Prieto C., Vitolo R.: A covariant approach to the quantisation of a rigid body. preprint 2005.
[21] Park F. C., Kim M. W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies. Z. Angew. Math. Phys. 51 (2000), 820–834. | MR | Zbl
[22] Souriau J.-M.: Structure des systèmes dynamiques. Dunod, Paris 1969. | MR
[23] Tulczyjew W. M.: An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics. J. Geom. Phys. 2, 3 (1985), 93–105. | MR | Zbl
[24] Vershik A. M., Faddeev L. D.: Lagrangian mechanics in invariant form. Sel. Math. Sov. 4 (1981), 339–350.
[25] Warner F. W.: Foundations of differentiable manifolds and Lie groups. Scott, Foresman and Co., Glenview, Illinois, 1971. | MR | Zbl
[26] Whittaker E. T.: A treatise on the analytical dynamics of particles and rigid bodies. Wiley, New York, 1936.