On unique range sets of meromorphic functions in $\mathbb{C}^m$
Archivum mathematicum, Tome 43 (2007) no. 3, pp. 185-195 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By considering a question proposed by F. Gross concerning unique range sets of entire functions in $\mathbb {C}$, we study the unicity of meromorphic functions in $\mathbb {C}^m$ that share three distinct finite sets CM and obtain some results which reduce $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 9$ to $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 6$.
By considering a question proposed by F. Gross concerning unique range sets of entire functions in $\mathbb {C}$, we study the unicity of meromorphic functions in $\mathbb {C}^m$ that share three distinct finite sets CM and obtain some results which reduce $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 9$ to $5\le c_3(\mathcal {M}(\mathbb {C}^m))\le 6$.
Classification : 32A22
Keywords: entire (holomorphic) functions; meromorphic functions; unique range sets; linearly (in)dependent
@article{ARM_2007_43_3_a4,
     author = {Bai, Xiao-Tian and Han, Qi},
     title = {On unique range sets of meromorphic functions in $\mathbb{C}^m$},
     journal = {Archivum mathematicum},
     pages = {185--195},
     year = {2007},
     volume = {43},
     number = {3},
     mrnumber = {2354807},
     zbl = {1164.32001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a4/}
}
TY  - JOUR
AU  - Bai, Xiao-Tian
AU  - Han, Qi
TI  - On unique range sets of meromorphic functions in $\mathbb{C}^m$
JO  - Archivum mathematicum
PY  - 2007
SP  - 185
EP  - 195
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a4/
LA  - en
ID  - ARM_2007_43_3_a4
ER  - 
%0 Journal Article
%A Bai, Xiao-Tian
%A Han, Qi
%T On unique range sets of meromorphic functions in $\mathbb{C}^m$
%J Archivum mathematicum
%D 2007
%P 185-195
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a4/
%G en
%F ARM_2007_43_3_a4
Bai, Xiao-Tian; Han, Qi. On unique range sets of meromorphic functions in $\mathbb{C}^m$. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 185-195. http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a4/

[1] Bernstein C. A., Chang D. C., Li B. Q.: Shared values for meromorphic functions. Adv. Math. 115 (1995), 201–220. | MR

[2] Fang M. L.: On the uniqueness of admissible meromorphic functions in the unit disc. Sci. China Ser. A 28 (1998), 1056–1074. | MR

[3] Fujimoto H.: The uniqueness problem of meromorphic maps into the complex projective space. Nagoya Math. J. 58 (1975), 1–23. | MR | Zbl

[4] Gackstatter F., Laine I.: Zur Theorie der gew$\ddot{o}$hnlichen Differentialgleichungen im Komplexen. Ann. Polon. Math. 38 (1980), 259–287. | MR

[5] Gross F.: On the distribution of values of meromorphic functionas. Trans. Amer. Math. Soc. 131 (1968), 199–214. | MR

[6] Gross F.: Factorization of meromorphic functions and some open problems. Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, Kentucky, 1976), Lecture Notes in Math. 599, Springer, Berlin, 1977. | MR

[7] Hayman W. K.: Meromorphic Functions. Clarendon Press, Oxford, 1964. | MR | Zbl

[8] Hu P. C., Li C., Yang C. C.: Unicity of Meromorphic Mappings. Kluwer Academic, Dordrecht, 2003. | MR | Zbl

[9] Jin L., Ru M.: A unicity theorem for moving targets counting multiplicities. Tôhoku Math. J. 57 (2005), 589–595. | MR | Zbl

[10] Vitter A.: The lemma of the logarithmic derivative in several complex variables. Duke Math. J. 44 (1977), 89–104. | MR | Zbl

[11] Yang C. C., Yi H. X.: Uniqueness Theory of Meromorphic Functions. Science Press & Kluwer Academic, Beijing & Dordrecht, 2003. | MR | Zbl

[12] Yi H. X.: On a question of Gross concerning uniqueness of entire functions. Bull. Austral. Math. Soc. 57 (1998), 343–349. | MR | Zbl