Ideal amenability of module extensions of Banach algebras
Archivum mathematicum, Tome 43 (2007) no. 3, pp. 177-184
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\cal A$ be a Banach algebra. $\cal A$ is called ideally amenable if for every closed ideal $I$ of $\cal A$, the first cohomology group of $\cal A$ with coefficients in $I^*$ is zero, i.e. $H^1({\cal A}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\cal A$ is called $n$-ideally amenable if for every closed ideal $I$ of $\cal A$, $H^1({\cal A},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.
Let $\cal A$ be a Banach algebra. $\cal A$ is called ideally amenable if for every closed ideal $I$ of $\cal A$, the first cohomology group of $\cal A$ with coefficients in $I^*$ is zero, i.e. $H^1({\cal A}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\cal A$ is called $n$-ideally amenable if for every closed ideal $I$ of $\cal A$, $H^1({\cal A},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.
Classification : 46Hxx
Keywords: ideally amenable; Banach algebra; derivation
@article{ARM_2007_43_3_a3,
     author = {Gordji, Eshaghi M. and Habibian, F. and Hayati, B.},
     title = {Ideal amenability of module extensions of {Banach} algebras},
     journal = {Archivum mathematicum},
     pages = {177--184},
     year = {2007},
     volume = {43},
     number = {3},
     mrnumber = {2354806},
     zbl = {1164.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a3/}
}
TY  - JOUR
AU  - Gordji, Eshaghi M.
AU  - Habibian, F.
AU  - Hayati, B.
TI  - Ideal amenability of module extensions of Banach algebras
JO  - Archivum mathematicum
PY  - 2007
SP  - 177
EP  - 184
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a3/
LA  - en
ID  - ARM_2007_43_3_a3
ER  - 
%0 Journal Article
%A Gordji, Eshaghi M.
%A Habibian, F.
%A Hayati, B.
%T Ideal amenability of module extensions of Banach algebras
%J Archivum mathematicum
%D 2007
%P 177-184
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a3/
%G en
%F ARM_2007_43_3_a3
Gordji, Eshaghi M.; Habibian, F.; Hayati, B. Ideal amenability of module extensions of Banach algebras. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 177-184. http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a3/

[1] Bade W. G., Curtis P. G., Dales H. G.,: Amenability and weak amenability for Beurling and Lipschits algebra. Proc. London Math. Soc. (3) 55 (1987), 359–377. | MR

[2] Dales H. G., Ghahramani F., Grønbæk N.: Derivations into iterated duals of Banach algebras. Studia Math. 128 (1998), 19–54. | MR

[3] Despic M., Ghahramani F.: Weak amenability of group algebras of locally compact groups. Canad. Math. Bull. 37 (1994), 165–167. | MR | Zbl

[4] Eshaghi Gordji M., Hosseiniun S. A. R.: Ideal amenability of Banach algebras on locally compact groups. Proc. Indian Acad. Sci. 115, 3 (2005), 319–325. | MR | Zbl

[5] Eshaghi Gordji M., Hayati B., Hosseiniun S. A. R.: Derivations into duals of closed ideals of Banach algebras. submitted.

[6] Eshaghi Gordji M., Habibian F., Rejali A.: Ideal amenability of module extension Banach algebras. Int. J. Contemp. Math. Sci. 2, 5 (2007), 213–219. | MR | Zbl

[7] Eshaghi Gordji M., Memarbashi R.: Derivations into n-th duals of ideals of Banach algebras. submitted. | Zbl

[8] Eshaghi Gordji M., Yazdanpanah T.: Derivations into duals of ideals of Banach algebras. Proc. Indian Acad. Sci. 114, 4 (2004), 399–408. | MR

[9] Grønbæk N.: A characterization of weakly amenable Banach algebras. Studia Math. 94 (1989), 150–162. | MR

[10] Grønbæk N.: Weak and cyclic amenability for non-commutative Banach algebras. Proc. Edinburg Math. Soc. 35 (1992), 315–328. | MR

[11] Haagerup U.: All nuclear ${\mathcal C}^*$-algebras are amenable. Invent. Math. 74 (1983), 305–319. | MR

[12] Johnson B. E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972). | MR | Zbl

[13] Johnson B. E.: Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991), 281–284. | MR | Zbl

[14] Johnson B. E., White M. C.: A non-weakly amenable augmentation ideal. submitted.

[15] Wassermann S.: On tensor products of certain group $C^*-$algebras. J. Funct. Anal. 23 (1976), 28–36. | MR | Zbl

[16] Zhang, Yong: Weak amenability of module extensions of Banach algebras. Trans. Amer. Math. Soc. 354, (10) (2002), 4131–4151. | MR | Zbl