On locally Lipschitz locally compact transformation groups of manifolds
Archivum mathematicum, Tome 43 (2007) no. 3, pp. 159-162 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.
In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.
Classification : 57S05
Keywords: locally Lipschitz transformation group; Hilbert-Smith conjecture
@article{ARM_2007_43_3_a1,
     author = {George Michael, A. A.},
     title = {On locally {Lipschitz} locally compact transformation groups of manifolds},
     journal = {Archivum mathematicum},
     pages = {159--162},
     year = {2007},
     volume = {43},
     number = {3},
     mrnumber = {2354804},
     zbl = {1164.57014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a1/}
}
TY  - JOUR
AU  - George Michael, A. A.
TI  - On locally Lipschitz locally compact transformation groups of manifolds
JO  - Archivum mathematicum
PY  - 2007
SP  - 159
EP  - 162
VL  - 43
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a1/
LA  - en
ID  - ARM_2007_43_3_a1
ER  - 
%0 Journal Article
%A George Michael, A. A.
%T On locally Lipschitz locally compact transformation groups of manifolds
%J Archivum mathematicum
%D 2007
%P 159-162
%V 43
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a1/
%G en
%F ARM_2007_43_3_a1
George Michael, A. A. On locally Lipschitz locally compact transformation groups of manifolds. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 159-162. http://geodesic.mathdoc.fr/item/ARM_2007_43_3_a1/

[1] Bochner S., Montgomery D.: Locally compact groups of differentiable transformations. Ann. of Math. (2) 47 (1946), 639–653. | MR | Zbl

[2] Bourbaki N.: Topologie générale, Chap. 1-4. Hermann, Paris 1971. | MR

[3] Bredon G. E., Raymond F., Williams R. F.: $p$-Adic transformation groups. Trans. Amer. Math. Soc. 99 (1961), 488–498. | MR

[4] Dieudonne J.: Foundations of modern analysis. Academic Press, New York–London 1960. | MR | Zbl

[5] Dress A.: Newman’s theorems on transformation groups. Topology, 8 (1969), 203–207. | MR | Zbl

[6] Federer H.: Geometric measure theory. Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969. | MR | Zbl

[7] Hofmann K. H., Morris S. A.: The structure of compact groups. de Gruyter Stud. Math. 25 (1998). | MR | Zbl

[8] Karube T.: Transformation groups satisfying some local metric conditions. J. Math. Soc. Japan 18, No. 1 (1966), 45–50. | MR | Zbl

[9] Kuranishi M.: On conditions of differentiability of locally compact groups. Nagoya Math. J. 1 (1950), 71–81. | MR | Zbl

[10] Michael G.: On the smoothing problem. Tsukuba J. Math. 25, No. 1 (2001), 13–45. | MR | Zbl

[11] Montgomery D.: Finite dimensionality of certain transformation groups. Illinois J. Math. 1 (1957), 28–35. | MR | Zbl

[12] Montgomery D., Zippin L.: Topological transformation groups. Interscience Publishers, New York, 1955. | MR | Zbl

[13] Nagami K. R.: Mappings of finite order and dimension theory. Japan J. Math. 30 (1960), 25–54. | MR | Zbl

[14] Nagami K. R.: Dimension-theoretical structure of locally compact groups. J. Math. Soc. Japan 14, No. 4 (1962), 379–396. | MR | Zbl

[15] Nagami K. R.: Dimension theory. Academic Press, New York, 1970. | MR | Zbl

[16] Nagata J.: Modern dimension theory. Sigma Ser. Pure Math. 2 (1983). | Zbl

[17] Repovš D., Ščepin E. V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308 (1997), 361–364. | MR | Zbl

[18] Yang C. T.: p-adic transformation groups. Michigan Math. J. 7 (1960), 201–218. | MR | Zbl