Symmetries in hexagonal quasigroups
Archivum mathematicum, Tome 43 (2007) no. 2, pp. 123-132
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study symmetries about a point, segment and ordered triple of points in hexagonal quasigroups. The main results are the theorems on composition of two and three symmetries.
Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study symmetries about a point, segment and ordered triple of points in hexagonal quasigroups. The main results are the theorems on composition of two and three symmetries.
@article{ARM_2007_43_2_a3,
author = {Volenec, Vladim{\'\i}r and Bombardelli, Mea},
title = {Symmetries in hexagonal quasigroups},
journal = {Archivum mathematicum},
pages = {123--132},
year = {2007},
volume = {43},
number = {2},
mrnumber = {2336964},
zbl = {1156.20066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a3/}
}
Volenec, Vladimír; Bombardelli, Mea. Symmetries in hexagonal quasigroups. Archivum mathematicum, Tome 43 (2007) no. 2, pp. 123-132. http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a3/
[1] Volenec V.: Geometry of medial quasigroups. Rad Jugoslav. Akad. Znan. Umjet. [421] 5 (1986), 79–91. | MR | Zbl
[2] Volenec V.: Geometry of IM quasigroups. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [456] 10 (1991), 139–146. | MR | Zbl
[3] Volenec V.: Hexagonal quasigroups. Arch. Math. (Brno), 27a (1991), 113–122. | MR | Zbl
[4] Volenec V.: Regular triangles in hexagonal quasigroups. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [467] 11 (1994), 85–93. | MR | Zbl
[5] Bombardelli M., Volenec V.: Vectors and transfers in hexagonal quasigroups. to be published in Glas. Mat. Ser. III. | MR