Oscillation theorems for certain even order neutral differential equations
Archivum mathematicum, Tome 43 (2007) no. 2, pp. 105-122 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with a class of even order nonlinear differential equations of the form \[ \frac{d}{dt}\Big ( \Big |\left( x(t)+p(t)x(\tau (t))\right) ^{(n-1)}\Big | ^{\alpha -1}(x(t)+p(t)x(\tau (t)))^{(n-1)}\Big ) +F\big ( t,x(g(t))\big ) =0\,, \] where $n$ is even and $t\ge t_{0}$. By using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of existing results. Our results are more general and sharper than some previous results even for second order equations.
This paper is concerned with a class of even order nonlinear differential equations of the form \[ \frac{d}{dt}\Big ( \Big |\left( x(t)+p(t)x(\tau (t))\right) ^{(n-1)}\Big | ^{\alpha -1}(x(t)+p(t)x(\tau (t)))^{(n-1)}\Big ) +F\big ( t,x(g(t))\big ) =0\,, \] where $n$ is even and $t\ge t_{0}$. By using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of existing results. Our results are more general and sharper than some previous results even for second order equations.
Classification : 34K11
Keywords: neutral differential equation; oscillation criterion; Riccati transform; averaging method
@article{ARM_2007_43_2_a2,
     author = {Yang, Qi Gui and Cheng, Sui-Sun},
     title = {Oscillation theorems for certain even order neutral differential equations},
     journal = {Archivum mathematicum},
     pages = {105--122},
     year = {2007},
     volume = {43},
     number = {2},
     mrnumber = {2336963},
     zbl = {1164.34031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a2/}
}
TY  - JOUR
AU  - Yang, Qi Gui
AU  - Cheng, Sui-Sun
TI  - Oscillation theorems for certain even order neutral differential equations
JO  - Archivum mathematicum
PY  - 2007
SP  - 105
EP  - 122
VL  - 43
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a2/
LA  - en
ID  - ARM_2007_43_2_a2
ER  - 
%0 Journal Article
%A Yang, Qi Gui
%A Cheng, Sui-Sun
%T Oscillation theorems for certain even order neutral differential equations
%J Archivum mathematicum
%D 2007
%P 105-122
%V 43
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a2/
%G en
%F ARM_2007_43_2_a2
Yang, Qi Gui; Cheng, Sui-Sun. Oscillation theorems for certain even order neutral differential equations. Archivum mathematicum, Tome 43 (2007) no. 2, pp. 105-122. http://geodesic.mathdoc.fr/item/ARM_2007_43_2_a2/

[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation criteria for certain $n$-th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2002), 601–522. | MR | Zbl

[2] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Difference and Functional Differential equations. Kluwer, Dordrecht, 2000. | MR | Zbl

[3] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating argument. SIAM J. Math. Anal. 15 (1984), 308–316. | MR

[4] Grammatikopoulos M. K., Ladas G., Meimaridou A.: Oscillations of second order neutral delay differential equations. Rat. Mat. 1 (1985), 267–274. | MR | Zbl

[5] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. second ed., Caombridge Univ. Press, Cambridge, 1988. | MR | Zbl

[6] Kiguradze I., Partsvania N., Stavroulakis I. P.: On oscillatory properties of higher order advanced functional differential equations. (Russian) Differentsial’nye Uravneniya 388 (2002), 1030–1041. | MR

[7] Kong Q.: Interval criteria for oscillation of second-order linear ordinary differential equations. J. Math. Anal. Appl. 229 (1999), 258–270. | MR | Zbl

[8] Kusano T., Lalli B. S.: On oscillation of half-linear functional differential equations with deviating arguments. Hiroshima Math. J., 24 (1994), 549-563. | MR | Zbl

[9] Philos, Ch. G.: A new criteria for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci. Mat. 39 (1981), 61–64. | MR

[10] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order. Arch. Math. 53 (1989), 483–492. | MR | Zbl

[11] Wang Q. R., Yang Q. G.: Interval criteria for oscillation of second-order half-linear differential equations. J. Math. Anal. Appl. 291 (2004), 224–236. | MR | Zbl

[12] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations. Dynam. Systems Appl. 4 (1995), 477–496. | MR | Zbl

[13] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. | MR

[14] Xu Z. T., Xia Y.: Integral averaging technique and oscillation of even order delay differential equations. J. Math. Anal. Appl. 292 (2004), 238–246. | MR

[15] Yang Q. G., Tang Y.: Oscillation of even order nonlinear functional differential equations with damping. Acta Math. Hungar. 1023 (2004), 223–238. | MR | Zbl

[16] Yang Q. G., Yang L. J., Zhu S. M.: Interval criteria for oscillation of second order nonlinear neutral differential equations. Computers and Math. Appl. 465-6 (2003), 903–918. | MR | Zbl