Periodic solutions of second order nonlinear functional difference equations
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 67-74
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions for the existence of at least one $T-$periodic solution of second order nonlinear functional difference equations are established. We allow $f$ to be at most linear, superlinear or sublinear in obtained results.
Sufficient conditions for the existence of at least one $T-$periodic solution of second order nonlinear functional difference equations are established. We allow $f$ to be at most linear, superlinear or sublinear in obtained results.
Classification : 39A11, 47N20
Keywords: periodic solutions; second order functional difference equation; fixed-point theorem; growth condition
@article{ARM_2007_43_1_a6,
     author = {Liu, Yuji},
     title = {Periodic solutions of second order nonlinear functional difference equations},
     journal = {Archivum mathematicum},
     pages = {67--74},
     year = {2007},
     volume = {43},
     number = {1},
     mrnumber = {2310126},
     zbl = {1164.39005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/}
}
TY  - JOUR
AU  - Liu, Yuji
TI  - Periodic solutions of second order nonlinear functional difference equations
JO  - Archivum mathematicum
PY  - 2007
SP  - 67
EP  - 74
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/
LA  - en
ID  - ARM_2007_43_1_a6
ER  - 
%0 Journal Article
%A Liu, Yuji
%T Periodic solutions of second order nonlinear functional difference equations
%J Archivum mathematicum
%D 2007
%P 67-74
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/
%G en
%F ARM_2007_43_1_a6
Liu, Yuji. Periodic solutions of second order nonlinear functional difference equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/

[1] Atici F. M., Gusenov G. Sh.: Positive periodic solutions for nonlinear difference equations with periodic coefficients. J. Math. Anal. Appl. 232 (1999), 166–182. | MR

[2] Atici F. M., Cabada A.: Existence and uniqueness results for discrete second order periodic boundary value problems. Comput. Math. Appl. 45 (2003), 1417–1427. | MR | Zbl

[3] Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, New York, 1985. | MR | Zbl

[4] Guo Z., Yu J.: The existence of periodic and subharmonic solutions for second order superlinear difference equations. Science in China (Series A) 3 (2003), 226–235. | MR

[5] Jiang D., O’Regan D., Agarwal R. P.: Optimal existence theory for single and multiple positive periodic solutions to functional difference equations. Appl. Math. Lett. 161 (2005), 441–462. | MR | Zbl

[6] Kocic V. L., Ladas G.: Global behivior of nonlinear difference equations of higher order with applications. Kluwer Academic Publishers, Dordrecht-Boston-London, 1993. | MR

[7] Ma M., Yu J.: Existence of multiple positive periodic solutions for nonlinear functional difference equations. J. Math. Anal. Appl. 305 (2005), 483–490. | MR | Zbl

[8] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-II. Equivalent linearization. J. Franklin Inst. B 320 (1985), 169–174. | MR | Zbl

[9] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-III. Perturbation theory. J. Franklin Inst. B 321 (1986), 39–47. | MR | Zbl

[10] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-IV. Multi-discrete time method. J. Franklin Inst. B 324 (1987), 263–271. | MR | Zbl

[11] Raffoul Y. N.: Positive periodic solutions for scalar and vector nonlinear difference equations. Pan-American J. Math. 9 (1999), 97–111.

[12] Wang Y., Shi Y.: Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl. 309 (2005), 56–69. | MR | Zbl

[13] Zeng Z.: Existence of positive periodic solutions for a class of nonautonomous difference equations. Electronic J. Differential Equations 3 (2006), 1–18. | MR | Zbl

[14] Zhang R., Wang Z., Chen Y., Wu J.: Periodic solutions of a single species discrete population model with periodic harvest/stock. Comput. Math. Appl. 39 (2000), 77–90. | MR | Zbl

[15] Zhu L., Li Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter. J. Math. Anal. Appl. 290 (2004), 654–664. | MR | Zbl