Keywords: periodic solutions; second order functional difference equation; fixed-point theorem; growth condition
@article{ARM_2007_43_1_a6,
author = {Liu, Yuji},
title = {Periodic solutions of second order nonlinear functional difference equations},
journal = {Archivum mathematicum},
pages = {67--74},
year = {2007},
volume = {43},
number = {1},
mrnumber = {2310126},
zbl = {1164.39005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/}
}
Liu, Yuji. Periodic solutions of second order nonlinear functional difference equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/ARM_2007_43_1_a6/
[1] Atici F. M., Gusenov G. Sh.: Positive periodic solutions for nonlinear difference equations with periodic coefficients. J. Math. Anal. Appl. 232 (1999), 166–182. | MR
[2] Atici F. M., Cabada A.: Existence and uniqueness results for discrete second order periodic boundary value problems. Comput. Math. Appl. 45 (2003), 1417–1427. | MR | Zbl
[3] Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, New York, 1985. | MR | Zbl
[4] Guo Z., Yu J.: The existence of periodic and subharmonic solutions for second order superlinear difference equations. Science in China (Series A) 3 (2003), 226–235. | MR
[5] Jiang D., O’Regan D., Agarwal R. P.: Optimal existence theory for single and multiple positive periodic solutions to functional difference equations. Appl. Math. Lett. 161 (2005), 441–462. | MR | Zbl
[6] Kocic V. L., Ladas G.: Global behivior of nonlinear difference equations of higher order with applications. Kluwer Academic Publishers, Dordrecht-Boston-London, 1993. | MR
[7] Ma M., Yu J.: Existence of multiple positive periodic solutions for nonlinear functional difference equations. J. Math. Anal. Appl. 305 (2005), 483–490. | MR | Zbl
[8] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-II. Equivalent linearization. J. Franklin Inst. B 320 (1985), 169–174. | MR | Zbl
[9] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-III. Perturbation theory. J. Franklin Inst. B 321 (1986), 39–47. | MR | Zbl
[10] Mickens R. E.: Periodic solutions of second order nonlinear difference equations containing a small parameter-IV. Multi-discrete time method. J. Franklin Inst. B 324 (1987), 263–271. | MR | Zbl
[11] Raffoul Y. N.: Positive periodic solutions for scalar and vector nonlinear difference equations. Pan-American J. Math. 9 (1999), 97–111.
[12] Wang Y., Shi Y.: Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions. J. Math. Anal. Appl. 309 (2005), 56–69. | MR | Zbl
[13] Zeng Z.: Existence of positive periodic solutions for a class of nonautonomous difference equations. Electronic J. Differential Equations 3 (2006), 1–18. | MR | Zbl
[14] Zhang R., Wang Z., Chen Y., Wu J.: Periodic solutions of a single species discrete population model with periodic harvest/stock. Comput. Math. Appl. 39 (2000), 77–90. | MR | Zbl
[15] Zhu L., Li Y.: Positive periodic solutions of higher-dimensional functional difference equations with a parameter. J. Math. Anal. Appl. 290 (2004), 654–664. | MR | Zbl